W13 - Notes

Parametric curves

Videos

Videos, Organic Chemistry Tutor

• Intro to parametric equations and graphing

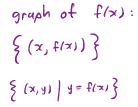
01 Theory

Parametric curves are curves traced by the path of a 'moving' point. An independent parameter, such as t for 'time', controls both x and y values through Cartesian coordinate **functions** x(t) and y(t). The coordinates of the moving point are (x(t), y(t)).

Parametric curve

A **parametric curve** is a function from parameter space \mathbb{R} to the plane \mathbb{R}^2 given in terms of coordinate functions:

$$t\longmapstoig(x(t),\,y(t)ig)$$



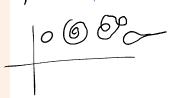
△ Other notations

Be aware that sometimes the coordinate functions are written with f and g (or yet other letters) like this:

$$(x,y)=(\,f(t),\,g(t)\,)$$

Or simply equating coordinate letters with functions: x = f(t), y = g(t)

Sometimes a different parameter is used, like s or u.

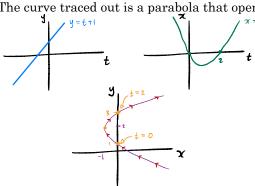


For example, suppose:

$$x = t(t-2)$$

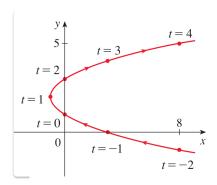
 $x = t^2 - 2t, y = t+1$

The curve traced out is a parabola that opens horizontally:



Solve:
$$t = y-1$$

 $\Rightarrow x = (y-1)^2 - 2(y-1)$
 $= y^2 - 2y+1 - 2y+2$
 $= y^2 - 4y + 3$
 $= (y^2 - 4y + y) - 1$
 $x(4) = (y-2)^2 - 1$



Given a parametric curve, we can create an equation satisfied by x and y variables by solving for t in either coordinate function (inverting either f or g) and plugging the result into the other function.

In the example:

$$y=t+1$$
 $\gg\gg$ $t=y-1$ $\gg\gg$ $x=t^2-2t$ $\gg\gg$ $x=(y-1)^2-2(y-1)$ $\gg\gg$ $x=y^2-4y+3$ $\gg\gg$ $x=(y-2)^2-1$

This is the equation of a parabola centered at (-1,2) that opens to the right.

⊞ Image of a parametric curve

The **image** of a parametric curve is the *set* of output points (x(t), y(t)) that are traversed by the moving point.

A parametric curve has *hidden information* that isn't contained in the image:

- The *time values t* when the moving point is found in various locations.
- The *speed* at which the curve is traversed.
- The *direction* in which the curve is traversed.

We can **reparametrize** a parametric curve to use a different parameter or different coordinate functions while leaving the *image unchanged*.

t ~ > t+1

In the previous example, shift t by 1:

$$x=(t+1)^2-2(t+1), \qquad y=(t+1)+1$$

$$\gg\gg \qquad x=t^2-1, \qquad y=t+2$$

Since the parameter t and the parameter t+1 both cover the same values for $t \in (-\infty, \infty)$, the same curve is traversed. But the moving point in the second, shifted version reaches any given location *one unit earlier* in time. (When t=-1 in the second version, the input to x(t) and y(t) is the same as when t=0 in the first one.)

02 Illustration

From:
$$\cos^2 t + \sin^2 t = 1$$

 $(R \cos t)^2 + (R \sin t)^2 = R^2$

≡ Example - Parametric circles

$$(R\cos t, R\sin t) = (x,y)$$

Ellipse:

 $\left(\frac{\chi}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$

 $x = a \cos t$ $y = b \sin t$

The standard equation of a circle of radius R centered at the point (h, k):

$$(x-h)^2 + (y-k)^2 = R^2$$

This equation says that the *distance* from a point (x, y) on the circle to the center point (h, k) equals R. This fact defines the circle.

Parametric coordinates for the circle:

$$x=h+R\cos t, \qquad y=k+R\sin t, \qquad t\in [0,2\pi)$$

For example, the unit circle $x^2 + y^2 = 1$ is parametrized by $x = \cos t$ and $y = \sin t$.

≡ Example - Parametric lines

(1) Parametric coordinate functions for a line: (a, b) = /x, y) @ b = 0

$$x=0+rt, \qquad y=b+st, \qquad t\in (-\infty,+\infty)$$

Compare this to the graph of linear function:

$$u = mx + b$$
 some m, b

Vertical lines cannot be described as the graph of a function. We must use x = a.

Vertical line:
$$x = a^n$$
 from: $r = 0$ $s \neq 0$ $y = 0 + 5$

(2) Parametric lines can describe all lines equally well, including horizontal and vertical lines.

A vertical line x = a is achieved by setting s = 0 and $r \neq 0$.

A horizontal line y = b is achieved by setting r = 0 and $s \neq 0$.

A non-vertical line y = mx + b may be achieved by setting s = m and r = 1, and a = 0.

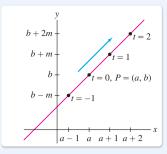
(3) Assuming that $r \neq 0$, the parametric coordinate functions describe a line satisfying:

and therefore the slope is $m = \frac{s}{r}$ and the *y*-intercept is $b - \frac{s}{r} \cdot a$.

(4) The point-slope construction of a line has a parametric analogue:

point-slope line:

$$y-a=m(x-b) \hspace{1cm} (x,y)=(a+t,\,b+mt)$$



≡ Example - Parametric ellipses

The general equation of an ellipse centered at (h, k) with half-axes a and b is:

$$\left(rac{x-h}{a}
ight)^2+\left(rac{y-k}{b}
ight)^2=1$$

This equation represents a *stretched unit circle*:

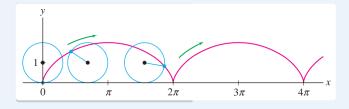
- by *a* in the *x*-axis
- by *b* in the *y*-axis

Parametric coordinate functions for the general ellipse:

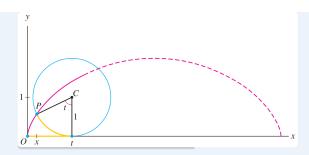
$$x = h + a\cos t, \qquad y = k + b\sin t, \qquad t \in [0, 2\pi)$$

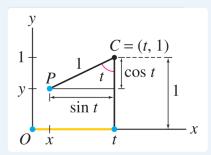
≡ Example - Parametric cycloids

The cycloid is the curve traced by a pen attached to the rim of a wheel as it rolls.



It is easy to describe the cycloid parametrically. Consider the geometry of the situation:





The center C of the wheel is moving rightwards at a constant speed of 1, so its position is (t,1). The angle is revolving at the same constant rate of 1 (in radians) because the radius is 1.

The triangle shown has base $\sin t$, so the x coordinate is $t - \sin t$. The y coordinate is $1 - \cos t$.

So the coordinates of the point P = (x, y) are given parametrically by:

$$x = t - \sin t,$$
 $y = 1 - \cos t,$ $t > 0$

If the circle has another radius, say R, then the parametric formulas change to:

$$x = Rt - R\sin t,$$
 $y = R - R\cos t,$ $t > 0$

Calculus with parametric curves

03 Theory - Slope, concavity

We can use x(t) and y(t) data to compute the slope of a parametric curve in terms of t.

Slope formula

Given a parametric curve (x(t), y(t)), its slope satisfies:

$$\frac{dy}{dx} = \underbrace{\frac{y'(t)}{x'(t)}} \quad \text{(where } x'(t) \neq 0\text{)}$$

 $\frac{y'}{x'} = \frac{dy'}{dx'} \frac{dt}{dt} = \frac{dy}{dt} \frac{dt}{dx} = \frac{dy}{dx}$

Concavity formula

Given a parametric curve (x(t), y(t)), its concavity satisfies the formula:

$$\begin{aligned} & \frac{d^{2}y}{dx^{2}} = \frac{d}{dt} \left(\frac{y'(t)}{x'(t)} \right) & \xrightarrow{t = t/x} \\ & = \frac{d}{dt} \left(\frac{y'(t)}{x'(t)} \right) & \xrightarrow{t = t/x} \\ & = \frac{d}{dt} \left(\frac{y'}{x} \right) \cdot \frac{dt}{dx} & \xrightarrow{dt} & \xrightarrow{dt} & \xrightarrow{dt} \\ & = \frac{d}{dt} \left(\frac{y'}{x} \right) \cdot \frac{1}{x'(t)} & \text{(where } x'(t) \neq 0) \end{aligned}$$

Extra - Derivation of slope and concavity formulas

For both derivations, it is necessary to view t as a function of x through the inverse parameter function. For example if x = f(t) is the parametrization, then $t = f^{-1}(x)$ is the inverse parameter function.

We will need the derivative $\frac{dt}{dx}$ in terms of t. For this we use the formula for derivative of inverse functions:

$$\frac{dt}{dx} = \frac{1}{\frac{dx}{dt}}$$

Given all this, both formulas are simple applications of the chain rule.

For the slope:

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$$
 $\gg \gg$ $y'(t) \cdot \frac{1}{dx/dt}$ $\gg \gg$ $\frac{y'(t)}{x'(t)}$

For the concavity:

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) \qquad \gg \gg \qquad \frac{d}{dt} \left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx}$$

$$\gg \gg \qquad \frac{d}{dt} \left(\frac{y'(t)}{x'(t)}\right) \cdot \frac{1}{x'(t)}$$

(In the second step we inserted the formula for $\frac{dy}{dx}$ from the slope.)

B Pure vertical, Pure horizontal movement

In view of the formula $\frac{dy}{dx} = \frac{y'(t)}{x'(t)}$, we see:

- Pure vertical: when x'(t) = 0 and yet $y'(t) \neq 0$
- Pure horizontal: when y'(t) = 0 and yet $x'(t) \neq 0$

When $x'(t_0) = y'(t_0) = 0$ for the same $t = t_0$, we have a **stationary point**, which might subsequently progress into pure vertical, pure horizontal, or neither.

04 Illustration

≡ Example - Tangent to a cycloid

(ycloid: (x,y) = (4+45m1, 4-4cor1) Find tangent line when t= 17/4.

Find M = dy , find (x0, y0) at t = 7/4

: Lime version: $\chi = a + rt$, y = b + st $a = x(^{\alpha}A) = \pi - r\lambda i$ $b = y(^{\pi}A) = y - r\lambda i$ $c = y(^{\pi}A) = y - r\lambda i$ $c = y(^{\pi}A) = y - r\lambda i$ $c = y(^{\pi}A) = y - r\lambda i$

 $\frac{1-5\sqrt{2}}{5\sqrt{2}} \cdot \frac{4+5\sqrt{2}}{7+5\sqrt{2}} = \frac{12-8}{84! + 8} = \sqrt{2}+1 = W$

Method: somt-slope line

2 (70, 40) = (7-252, 4-252) pt-slope: y = m/x-xo) + yo

NO y = ((= +1) (x- T+2NE) + 4-2NE

x(+) = 17-242 + (4-242)6 y(+) = 4-2NE + (2NE)6

Parametric Line version:

Find the tangent line (described parametrically) to the cycloid $(4t - 4\sin t, 4 - 4\cos t)$ when $t = \pi/4$.

Solution

(1) Compute x' and y'.

Find x'(t):

$$x(t) = 4t - 4\sin t \quad \gg \gg \quad x'(t) = 4 - 4\cos t$$

Find y'(t):

$$y(t) = 4 - 4\cos t$$
 $\gg \gg$ $y'(t) = 4\sin t$

(2) Plug in $t = \pi/4$:

$$x'(\pi/4)$$
 >>> $4 - 4\cos(\pi/4)$ >>> $4 - 2\sqrt{2}$

Plug in $t = \pi/4$:

$$y'(\pi/4)$$
 $\gg\gg 4\sin(\pi/4)$ $\gg\gg 2\sqrt{2}$

(3) Apply formula: $\frac{dy}{dx} = \frac{y'}{x'}$:

Calculate $\frac{dy}{dx}$ at $t = \pi/4$:

$$\frac{dy}{dx}(\pi/4) = \frac{y'(\pi/4)}{x'(\pi/4)}$$
 >>> $\frac{2\sqrt{2}}{4-2\sqrt{2}}$

Simplify:

$$\gg \gg \frac{2\sqrt{2}}{4-2\sqrt{2}} \cdot \frac{4+2\sqrt{2}}{4+2\sqrt{2}}$$

$$\gg \gg \qquad \frac{8\sqrt{2}+8}{16-8} \quad \gg \gg \quad \sqrt{2}+1$$

So:

$$\left. rac{dy}{dx} \right|_{t=\pi/4} \ = \ \sqrt{2} + 1$$

This is the slope m for our line.

(4) Need the point *P* for our line. Find (x, y) at $t = \pi/4$.

Plug $t = \pi/4$ into parametric formulas:

$$egin{aligned} \left(x(t),\,y(t)
ight)\Big|_{t=\pi/4} &\gg\gg &\left(4rac{\pi}{4}-4\sin(\pi/4),\;4-4\cos(\pi/4)
ight) \ &\gg\gg &\left(\pi-2\sqrt{2},4-2\sqrt{2}
ight) \end{aligned}$$

(5) Point-slope formulation of tangent line:

gent line:

$$x = a + t$$
, $y = b + mt$ add speed
 $= \sqrt{1 + m^2}$

Inserting our data:

$$x = (\pi - 2\sqrt{2}) + t, \qquad y = (4 - 2\sqrt{2}) + (\sqrt{2} + 1)t$$

≔ Example - Vertical and horizontal tangents of the circle

Consider the circle parametrized by $x = \cos t$ and $y = \sin t$. Find the points where the tangent lines are vertical or horizontal.

Solution

(1) For the points with vertical tangent line, we find where the moving point has x'(t)=0 (purely vertical motion):

$$x'(t) = -\sin t,$$
 $x'(t) = 0 \qquad \gg \gg \qquad -\sin t = 0$ $\gg \gg \qquad t = 0, \ \pi$

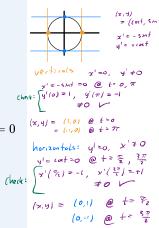
The moving point is at (1,0) when t=0, and at (-1,0) when $t=\pi$.

(2) For the points with horizontal tangent line, we find where the moving point has y'(t) = 0 (purely horizontal motion):

$$y'(t)=\cos t,$$
 $y'(t)=0$ $\gg\gg$ $\cos t=0$ $\gg\gg$ $t=rac{\pi}{2},\,rac{3\pi}{2}$

The moving point is at (0,1) when $t=\pi/2$, and at (0,-1) when $t=3\pi/2$.

≡ Example - Finding the point with specified slope



Consider the parametric curve given by $(x, y) = (t^2, t^3)$. Find the point where the slope of the tangent line to this curve equals 5.

Solution

(1) Compute the derivatives:

$$x'(t) = 2t, \qquad y'(t) = 3t^2$$

Therefore the slope of the tangent line, in terms of t:

$$m = rac{dy}{dx} \ = \ rac{y'(t)}{x'(t)}$$

$$\gg \gg \frac{3t^2}{2t} \gg \gg \frac{3}{2}t$$

(2) Set up equation:

$$m = 5$$

$$\frac{3}{2}t = 5$$

Solve. Obtain $t = \frac{10}{3}$.

(3) Find the point:

$$\left. \left(x,y
ight)
ight|_{t=10/3} \quad \gg \gg \quad \left(rac{100}{9}, \; rac{1000}{27}
ight)$$

05 Theory - Arclength

B Arclength formula

The **arclength** of a parametric curve with coordinate functions x(t) and y(t) is:

$$L=\int_a^b\sqrt{(x')^2+(y')^2}\overset{ackslash}{dt}$$

 $ds = \sqrt{x^2 + y^2} dt$

This formula assumes the curve is traversed one time as t increases from a to b.

△ Counts total traversal

This formula applies when the curve image is traversed *one time* by the moving point.

Sometimes a parametric curve traverses its image with repetitions. The arclength formula would add length from each repetition!

Extra - Derivation of arclength formula

The arclength of a parametric curve is calculated by integrating the infinitesimal arc element:

$$ds=\sqrt{dx^2+dy^2}$$

$$L = \int_{a}^{b} ds$$

In order to integrate ds in the t variable, as we must for parametric curves, we convert ds to a function of t:

$$ds = \sqrt{dx^2 + dy^2} \qquad \gg \gg \qquad \sqrt{rac{1}{dt^2} \cdot (dx^2 + dy^2) \cdot dt^2}$$

$$\gg\gg \sqrt{rac{dx^2}{dt^2}+rac{dy^2}{dt^2}}\cdot\sqrt{dt^2} \qquad \gg\gg \qquad \sqrt{\left(rac{dx}{dt}
ight)^2+\left(rac{dy}{dt}
ight)^2}\,dt$$

$$\gg \gg \qquad ds = \sqrt{x'(t)^2 + y'(t)^2} \, dt$$

So we obtain $ds = \sqrt{(x')^2 + (y')^2} dt$ and the arclength formula follows from this:

$$L=\int_a^b\sqrt{(x')^2+(y')^2}\,dt$$

06 Illustration

Example - Perimeter of a circles

(1) The perimeter of the circle $(R\cos t, R\sin t)$ is easily found. We have $(x', y') = (-R\sin t, R\cos t)$, and therefore:

$$(x')^2 + (y')^2 = (-R\sin t)^2 + (R\cos t)^2$$

 $\gg \gg R^2\sin^2 t + R^2\cos^2 t \gg \gg$

$$ds=\sqrt{(x')^2+(y')^2}\,dt=R\,dt$$

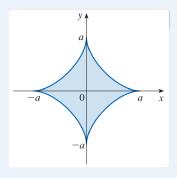
(2) Integrate around the circle:

 R^2

Perimeter
$$=\int_0^{2\pi}ds$$
 $\gg\gg$ $\int_0^{2\pi}R\,dt$ $\gg\gg$ $Rt\Big|_0^{2\pi}=2\pi R$

≔ Example - Perimeter of an asteroid

Find the perimeter length of the 'asteroid' given parametrically by $(x,y)=\left(a\cos^3\theta,\,a\sin^3\theta\right)$ for a=2.



Solution

(1) Notice: Throughout this problem we use the parameter θ instead of t. This does *not* mean we are using polar coordinates!

Compute the derivatives in θ :

$$(x', y') = (3a\cos^2\theta\sin\theta, 3a\sin^2\theta\cos\theta)$$

(2) Compute the infinitesimal arc element.

$$(x')^2 + (y')^2 \gg 9a^2 \cos^4 \theta \sin^2 \theta + 9a^2 \sin^4 \theta \cos^2 \theta$$

$$\gg 9a^2 \sin^2 \theta \cos^2 \theta \left(\cos^2 \theta + \sin^2 \theta\right)$$

$$\gg 9a^2 \sin^2 \theta \cos^2 \theta$$

Plug into the arc element, simplify:

$$ds = \sqrt{(x')^2 + y')^2} \, d heta$$
 $\gg \gg \sqrt{9a^2 \sin^2 heta \cos^2 heta} \, d heta$ $\gg \gg ds = 3a |\sin heta \cos heta | d heta$

(3) Bounds of integration?

Easiest to use $\theta \in [0, \pi/2]$. This covers one edge of the asteroid. Then multiply by 4 for the final answer.

On the interval $\theta \in [0, \pi/2]$, the factor $3a \sin \theta \cos \theta$ is *positive*. So we can drop the absolute value and integrate directly.

∧ Absolute values matter!

If we tried to integrate on the whole range $\theta \in [0, 2\pi]$, then $3a\sin\theta\cos\theta$ really does change sign.

To perform integration properly with these absolute values, we'd need to convert to a piecewise function by adding appropriate minus signs.

(4) Integrate the arc element:

$$\int_0^{\pi/2} ds \quad \gg \gg \quad \int_0^{\pi/2} 3a \sin \theta \cos \theta \, d\theta$$

$$\gg \gg \quad 3a \int_{u=0}^1 u \, du \qquad (u = \sin \theta)$$

$$\gg \gg \quad 3a \frac{u^2}{2} \Big|_0^1 \quad \gg \gg \quad \frac{3a}{2}$$

Finally, multiply by 4 to get the total perimeter: L=6a