W14 - Notes

More calculus with parametric curves

07 Theory - Distance, speed

⊕ Distance function

The **distance function** s(t) returns the total distance traveled by the particle from a chosen starting time t_0 up to the (input) time t:

$$s(t) \; = \; \int_{t_0}^t ds \;\;\; = \;\;\; \int_{t_0}^t \sqrt{x'(u)^2 + y'(u)^2} \, du$$

We need the dummy variable u so that the integration process does not conflict with t in the upper bound.

B Speed function

The **speed** of a moving particle is the *rate of change of distance*:

$$v(t) \; = \; s'(t) \quad = \quad \sqrt{x'(t)^2 + y'(t)^2}$$

This formula can be explained in either of two ways:

- 1. Apply the Fundamental Theorem of Calculus to the integral formula for s(t).
- 2. Consider $ds = \sqrt{x'(t)^2 + y'(t)^2} dt$ for a small change dt: so the *rate of change* of arclength is $\frac{ds}{dt}$, in other words s'(t).

08 Illustration

≡ Example - Speed, distance, displacement

The parametric curve $(t, \frac{2}{3}t^{3/2})$ describes the position of a moving particle (t measuring seconds).

(a) What is the speed function?

Suppose the particle travels for 8 seconds starting at t = 0.

- (b) What is the total distance traveled?
- (c) What is the total displacement?

Solution

- (a)
- (1) Compute derivatives:

$$\left(x^{\prime},\,y^{\prime}
ight)=\left(1,\,t^{1/2}
ight)$$

(2) Now compute the *speed*.

Find sum of squares:

$$(x')^2 + (y')^2 = 1 + (t^{1/2})^2 = 1 + t$$

Get the speed function:

$$v(t) = \sqrt{(x')^2 + (y')^2} = \sqrt{1+t}$$

- (b) Distance traveled by using speed.
- (1) Compute total distance traveled function:

$$s(t) = \int_{u=0}^t \sqrt{1+u}\,du$$

(2) Integrate.

Substitute w = 1 + u and dw = du.

New bounds are 1 and 1 + t.

Calculate:

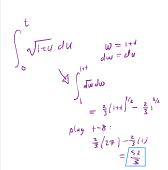
$$\gg\gg \int_1^{1+t} \sqrt{w} \, dw$$
 $\gg\gg \left. rac{2}{3} w^{3/2}
ight|_1^{1+t} \gg\gg \left. rac{2}{3} \left((1+t)^{3/2} - 1
ight)$

(3) Insert t = 8 for the answer.

The distance traveled up to t=8 is:

$$s(8) = \frac{2}{3} \Big(9^{3/2} - 1 \Big) \quad \gg \gg \quad \frac{2}{3} (27 - 1) \quad \gg \gg \quad \frac{52}{3}$$

This is our final answer.



$$(x_0, y_0) = \rho t_0$$
 $(x_1, y_1) = \rho t_1$

(c)

(1) Displacement formula: $d=\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$

Pythagorean formula for distance between given points.

(2) Compute starting and ending points.

For starting point, insert t = 0:

$$\left.\left(x(t),y(t)
ight)
ight|_{t=0} \qquad\gg\gg \qquad \left.\left(t,rac{2}{3}t^{3/2}
ight)
ight|_{t=0} \qquad\gg\gg \qquad (0,0)$$

For ending point, insert t = 8:

$$\left.\left(x(t),y(t)
ight)
ight|_{t=8}\quad\gg\gg\quad \left.\left(t,rac{2}{3}t^{3/2}
ight)
ight|_{t=8}$$

$$\gg\gg \left(8,rac{2}{3}8^{3/2}
ight) \gg\gg \left(8,rac{32\sqrt{2}}{3}
ight)$$

(3) Plug points into distance formula.

Insert (0,0) and $(8,32\sqrt{2}/3)$:

$$\sqrt{8^2 + \left(\frac{32\sqrt{2}}{3}\right)^2}$$
 $\gg \gg \sqrt{64 + \frac{2048}{9}}$

$$\gg\gg \frac{\sqrt{2624}}{3}$$

This is our final answer.

09 Theory - Surface area of revolutions

Recall $A = \int_{a}^{2\pi R} \sqrt{1+f^{2}} dx$ $A = \int_{a}^{2\pi R} \sqrt{1+f^{2}} dx$ $A = \int_{a}^{2\pi R} ds$ xis or the y-axis.

Suppose a parametric curve (x(t), y(t)) is revolved around the x-axis or the y-axis.

The surface area is:

$$A \quad = \quad \int_a^b 2\pi R(t) \, \sqrt{(x')^2 + (y')^2} \, dt$$

The radius R(t) should be the distance to the axis:

$$R(t) = y(t)$$
 revolution about x-axis $R(t) = x(t)$ revolution about y-axis

This formulas adds the areas of thin bands, but the bands are demarcated using parametric functions instead of input values of a graphed function.

The formula assumes that the curve is traversed one time as t increases from a to b.

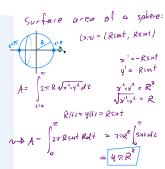
10 Illustration

≡ Example - Surface of revolution - parametric circle

(1) By revolving the unit upper semicircle about the x-axis, we can compute the surface area of the unit sphere.

The parametrization of the unit upper semicircle is: $(x, y) = (\cos t, \sin t)$.

The derivative is: $(x', y') = (-\sin t, \cos t)$.



(2) Therefore, the arc element:

$$ds = \sqrt{(x')^2 + (y')^2} \, dt$$
 $\gg\gg \sqrt{(-\sin t)^2 + (\cos t)^2} \, dt \gg\gg dt$

(3) Now for R we choose $R = y(t) = \sin t$ because we are revolving about the x-axis.

Plugging all this into the integral formula and evaluating gives:

$$A = \int_0^\pi 2\pi \sin t \, dt \quad \gg \gg \quad -2\pi \cos t \Big|_0^\pi \quad \gg \gg \quad 4\pi$$

Notice: This method is a little easier than the method using the graph $y = \sqrt{1 - x^2}$.

\equiv Example - Surface of revolution - parametric curve

Set up the integral which computes the surface area of the surface generated by revolving about the x-axis the curve $(t^3, t^2 - 1)$ for $0 \le t \le 1$.

Solution

For revolution about the *x*-axis, we set $R = y(t) = t^2 - 1$.

Then compute ds:

$$(\chi_1 y) = (t^3, t^2 - 1)$$

$$+ \varepsilon [0, 1] \qquad \chi - \alpha x; s$$

$$A = \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$A = \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$= \int_{2\pi}^{1} (t^3 - 1) \sqrt{qt^3 + qt^2} dt$$

$$ds = \sqrt{(x')^2 + (y')^2} \quad \gg \gg \quad \sqrt{(3t^2)^2 + (2t)^2} \quad \gg \gg \quad \sqrt{9t^4 + 4t^2}$$
 $\gg \gg \quad \sqrt{t^2(9t^2 + 4)} \quad \gg \gg \quad t\sqrt{9t^2 + 4}$

Therefore the desired integral is:

$$A = \int_0^1 2\pi R \, ds \quad \gg \gg \quad \int_0^1 2\pi (t^2-1)t \sqrt{9t^2+4} \, dt$$

Polar curves

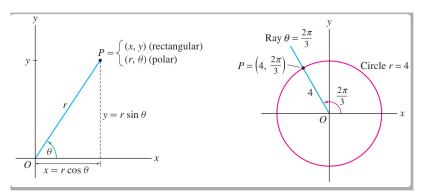
Videos

Videos, Organic Chemistry Tutor

- Polar coordinates intro
- Graphing polar curves

01 Theory - Polar points, polar curves

Polar coordinates are pairs of numbers (r, θ) which identify points in the plane in terms of distance to origin and angle from +x-axis:



$$\blacksquare$$
 Converting Polar \leftrightarrow Cartesian

$$egin{aligned} ext{Polar} & ext{Cartesian} & ext{Polar} \ x = r\cos \theta & ext{} r = \sqrt{x^2 + y^2} \ y = r\sin heta & ext{} ext{}$$

Polar coordinates have many redundancies: unlike Cartesian which are unique!

- For example: $(r, \theta) = (r, \theta + 2\pi)$
 - And therefore also $(r, \theta) = (r, \theta 2\pi)$ (negative θ can happen)

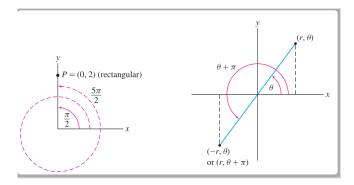
- For example: $(-r, \theta) = (r, \theta + \pi)$ for every r, θ
- For example: $(0, \theta) = (0, 0)$ for any θ

Polar coordinates *cannot be added*: they are not vector components!

- For example $(5, \pi/3) + (2, \pi/6) \neq (7, \pi/2)$
- Whereas Cartesian coordinates can be added: (1,4) + (2,-2) = (3,2)

\triangle The transition formulas Cartesian \rightarrow Polar require careful choice of θ .

- The standard definition of $\tan^{-1}\left(\frac{y}{x}\right)$ sometimes gives wrong θ
 - This is because it uses the restricted domain $\theta \in (-\pi/2, \pi/2)$; the polar interpretation is: only points in Quadrant I and Quadrant IV (SAFE QUADRANTS)
- Therefore: check signs of x and y to see which quadrant, maybe need π -correction!
 - Quadrant I or IV: polar angle is $\tan^{-1}\left(\frac{y}{x}\right)$
 - Quadrant II or III: polar angle is $\tan^{-1}\left(\frac{y}{x}\right) + \pi$



Equations (as well as points) can also be converted to polar.

For Cartesian \rightarrow Polar, look for cancellation from $\cos^2 \theta + \sin^2 \theta = 1$.

For Polar \rightarrow Cartesian, try to keep θ inside of trig functions.

For example:

• For example:

Q:
$$\frac{\cos^{1/2} \left(\frac{1}{\sqrt{x^2 + y^2}} \right)^{\frac{1}{2}}}{\cos^{1/2} \left(\frac{1}{\sqrt{x^2 + y^2}} \right)^2}$$

A: $\frac{r}{\left(\frac{1}{\sqrt{x^2 + y^2}} \right)^2}$

$$\frac{\sin^2 \theta}{\left(\frac{1}{\sqrt{x^2 + y^2}} \right)^2}$$

$$\frac{\cos \theta}{\cos \theta} = \frac{1}{\sqrt{x^2 + y^2}}$$

Do use: $\frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}}$

Do use: $\frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}}$

102 Illustration

 $\frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}}$
 $\frac{1}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}}$

 \equiv Example - Converting to polar: π -correction

Compute the polar coordinates of $\left(-\frac{1}{2},\,+\frac{\sqrt{3}}{2}\right)$ and of $\left(+\frac{\sqrt{2}}{2},\,-\frac{\sqrt{2}}{2}\right)$.

Solution

For $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ we observe first that it lies in Quadrant II.

Next compute:

$$\tan^{-1}\left(\frac{\sqrt{3}/2}{-1/2}\right) \gg \tan^{-1}\left(-\sqrt{3}\right) \gg -\pi/3$$

This angle is in Quadrant IV. We $add \pi$ to get the polar angle in Quadrant II:

$$heta=\pi-\pi/3$$
 >>> $2\pi/3$

The radius is of course 1 since this point lies on the unit circle. Therefore polar coordinates are $(r, \theta) = (1, 2\pi/3)$.

For $\left(+\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ we observe first that it lies in Quadrant IV. (No extra π needed.)

Next compute:

$$an^{-1}\left(rac{-\sqrt{2}/2}{+\sqrt{2}/2}
ight) \quad \gg \gg \quad an^{-1}(-1) \quad \gg \gg \quad -\pi/4$$

So the point in polar is $(1, -\pi/4)$.

Quadrat II Msafe

So:
$$\Gamma = \sqrt{\gamma^{3} \cdot y^{2}}$$

$$= \sqrt{\frac{1}{4} \cdot \frac{3}{4}} = 1$$

$$= \sqrt{\frac{1}{4} \cdot \frac{3}{4}} = 1$$

$$= \sqrt{\frac{1}{4} \cdot \frac{3}{4}} + \pi$$

$$= \sqrt{\frac{1}{4} \cdot \frac{3}{4}} + \pi$$

$$= \sqrt{\frac{1}{4} \cdot \frac{3}{4}} + \pi$$

$$= -\frac{\pi}{3} + \pi = 2\pi/3$$

$$= -\frac{\pi}{3} + \pi = 1$$

$$O4 - so ke$$

$$0 = \sqrt{\frac{1}{4} \cdot \frac{1}{4}} = 1$$

$$0 = \sqrt{\frac{1}{4} \cdot \frac{1}{4}} = 1$$

$$0 = \sqrt{\frac{1}{4} \cdot \frac{1}{4}} = 1$$

$$= -\frac{\pi}{4}$$

$$(\Gamma, 0) = (1, -\frac{\pi}{4}) = (1, +\frac{\pi}{4})$$

≡ Example - Shifted circle in polar

For example, let's convert a shifted circle to polar. Say we have the Cartesian equation:

$$x^2 + (y-3)^2 = 9$$

Then to find the polar we substitute $x = r \cos \theta$ and $y = r \sin \theta$ and simplify:

$$x^2+(y-3)^2=9$$

$$\gg\gg r^2\cos^2\theta+(r\sin\theta-3)^2=9$$

$$\gg\gg r^2\cos^2\theta+r^2\sin^2\theta-6r\sin\theta+9=9$$

$$\gg\gg r^2(\sin^2\theta+\cos^2\theta)-6r\sin\theta=0$$

$$\gg\gg r^2-6r\sin\theta=0 \gg\gg r=6\sin\theta$$

So this shifted circle is the polar graph of the polar function $r(\theta) = 6 \sin \theta$.

03 Theory - Polar limaçons

$$x^{2} + (y-3)^{2} = 9$$

$$x = r\cos\theta$$

$$y = r\sin\theta$$

$$r^{2}\cos^{2}\theta + (r\cos\theta - y)^{2} = 9$$

$$r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta - 6r\cos\theta + 9 = 9$$

$$r^{2} - 6r\sin\theta = 0$$

To draw the polar graph of some function, it can help to first draw the Cartesian graph of the function. (In other words, set y = r and $x = \theta$, and draw the usual graph.) By tracing through the points on the Cartesian graph, one can visualize the trajectory of the polar graph.

This Cartesian graph may be called a **graphing tool** for the polar graph.

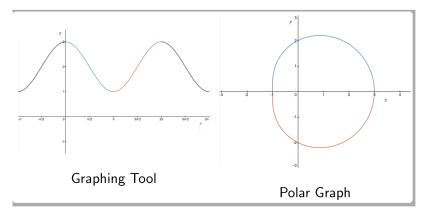
A limaçon is the polar graph of $r(\theta) = a + b \cos \theta$. $\sim b \frac{\langle \text{cole} \text{ 4/3} \rangle}{\langle \text{const} \text{ change shape } \text{shape} \text{ 1/4}}$

Any limaçon shape can be obtained by adjusting *c* in this function (and rescaling):

$$r = 1 + c\cos\theta$$

Limaçon satisfying $r(\theta) = 1$: unit circle.

Limaçon satisfying $r(\theta) = 2 + \cos \theta$: 'outer loop' circle with 'dimple':

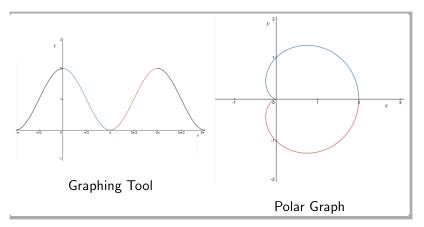


Say here $1+2\cos\theta$. What is shope of $5(1+2\cos\theta)$ i.e. of $5+10\cos\theta$?

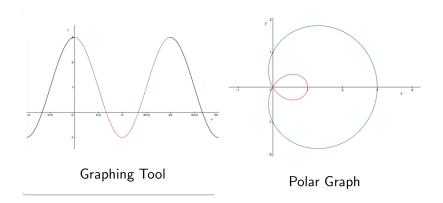
Graph of $\Gamma(\theta-\frac{\pi}{2})$ is some as graph of $\Gamma(\theta)$ except...

ROTATED by $\frac{\pi}{2}$ (ounterclockwise (ccw)) $\left(\Gamma(\theta+\frac{\pi}{3}): \Gamma \text{otabe} \quad \frac{\pi}{3} \quad (\text{lockwise})\right)$

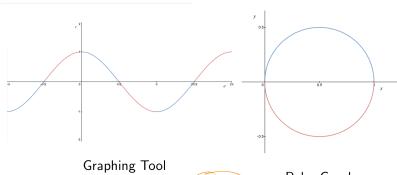
Limaçon satisfying $r(\theta) = 1 + \cos \theta$: 'cardioid' = 'outer loop' circle with 'dimple' that creates a cusp:



Limaçon satisfying $r(\theta) = 1 + 2\cos\theta$: 'dimple' pushes past cusp to create 'inner loop':



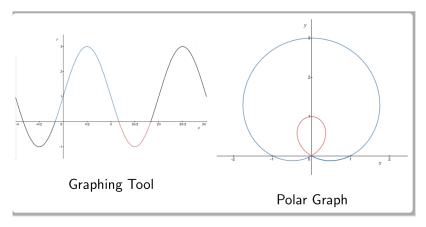
Limaçon satisfying $r(\theta) = \cos \theta$: 'inner loop' only, no outer loop exists:



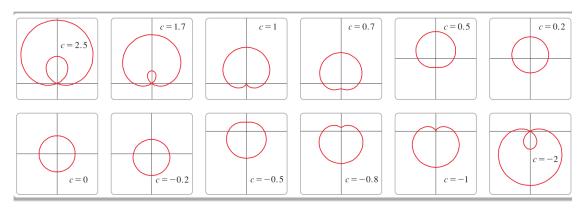
Graphing Iool $(os(\theta - \frac{\pi}{2}))$

Polar Graph

Limaçon satisfying $r(\theta) = 1 + 2\sin\theta$: 'inner loop' and 'outer loop' and rotated $\circlearrowleft 90^\circ$:



Transitions between limaçon types, $r(\theta) = 1 + c \sin \theta$:



Notice the transition points at |c| = 0.5 and |c| = 1:

The *flat spot* occurs when $c=\pm 0.5$

• Smaller *c* gives *convex shape*

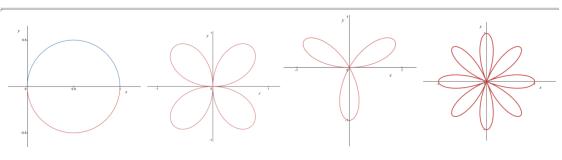
The *cusp* occurs when $c=\pm 1$

- Smaller c gives dimple (assuming |c| > 0.5)
- Larger c gives inner loop

04 Theory - Polar roses

Roses are polar graphs of this form:

 $r=\cos(heta), \qquad r=\sin(2 heta), \qquad r=\sin(3 heta), \qquad r=\sin(4 heta)$



n=11 petal n=2 4 petals

n=3 3 petals

n = 48 petals

The pattern of petals:

- n = 2k (even): obtain 2n petals
 - These petals traversed *once*
- n = 2k + 1 (odd): obtain n petals
 - These petals traversed *twice*
- Either way: total-petal-traversals: always 2n