

W01 Notes

Volume using cylindrical shells

Videos

Review

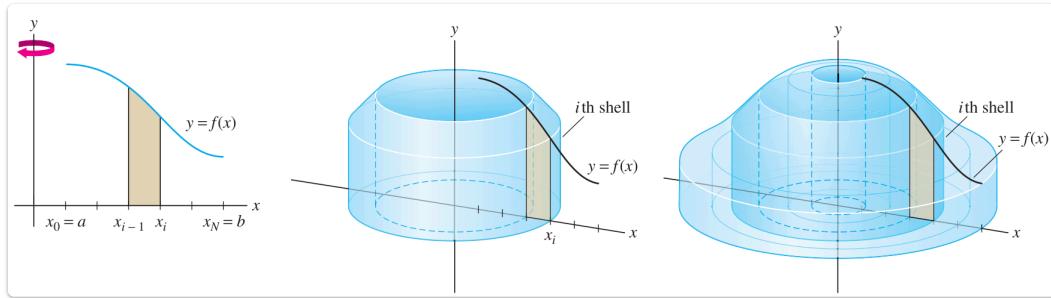
- [Volume using cross-sectional area](#)
- [Disk/washer method - 01](#)
- [Disk/washer method - 02](#)
- [Disk/washer method - 03](#)

Shells

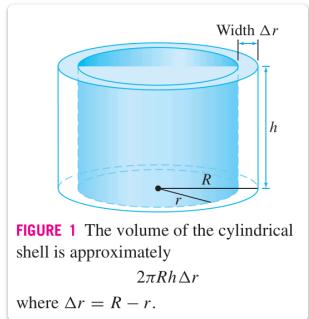
- [Shell method - 01](#)
- [Shell method - 02](#)
- [Shell method - 03](#)

01 Theory

Take a graph $y = f(x)$ in the first quadrant of the xy -plane. Rotate this about the y -axis. The resulting 3D body is symmetric around the axis. We can find the volume of this body by using an integral to add up the volumes of infinitesimal **shells**, where each shell is a *thin cylinder*.



The volume of each cylindrical shell is $2\pi R h \Delta r$:



In the limit as $\Delta r \rightarrow dr$ and the number of shells becomes infinite, their total volume is given by an integral.

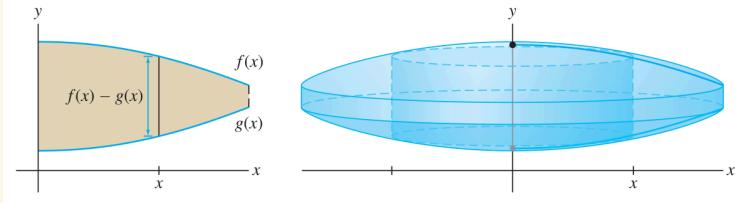
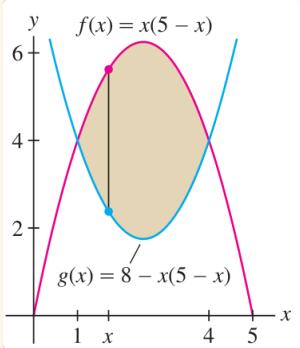
Volume by shells - general formula

$$V = \int_a^b 2\pi Rh \, dr$$

In any concrete volume calculation, we simply interpret each factor, 'R' and 'h' and 'dr', and determine a and b in terms of the variable of integration that is set for r .

⌚ Shells vs. washers

Can you see why shells are sometimes easier to use than washers?



02 Illustration

☰ Example - Revolution of a triangle

A rotation-symmetric 3D body has cross section given by the region between $y = 3x + 2$, $y = 6 - x$, $x = 0$, and is rotated around the y -axis. Find the volume of this 3D body.

Solution

(1) Cross-section region:

Bounded above-right by $y = 6 - x$. Bounded below-right by $y = 3x + 2$. These intersect at $x = 1$.

Bounded left by $x = 0$.

(2) Set up integral:

Rotated around y -axis, therefore use x for integration variable (shells!). Formula:

$$V = \int_a^b 2\pi Rh \, dr$$

Domain is $[a, b] = [0, 1]$.

$R(x) = x$ because shell radius is the x -distance from $x = 0$ to the shell position.

Height:

$$h(x) \ggg (6 - x) - (3x + 2)$$

$$\ggg 4 - 4x$$

dr is limit of Δr which equals Δx here, so $dr = dx$.

(3) Evaluate integral:

$$V = \int_a^b 2\pi Rh dr \ggg \int_0^1 2\pi \cdot x(4 - 4x) dx$$
$$\ggg 2\pi \left(2x^2 - \frac{4x^3}{3} \right) \Big|_0^1 \ggg \frac{4\pi}{3}$$

Practice exercise

Consider the region given by revolving the first hump of $y = \sin(x)$ about the y -axis. Set up an integral that gives the volume of this region using the method of shells.

Solution >

(1) Set up the integral for shells:

Integration variable: $r = x$, the distance of a shell to the y -axis.

Then $dr = dx$ and $h = \sin x$, the height of a shell.

Bounds: one hump is given by $x \in [0, \pi]$. Thus:

$$V = \int_0^\pi 2\pi x \sin x dx$$

(2) Perform the integral using IBP:

Choose $u = 2\pi x$ and $v' = \sin x$ since x is A and $\sin x$ is T.

Then $u' = 2\pi$ and $v = -\cos x$.

Use IBP formula:

$$\int uv' dx = uv - \int u'v dx$$

$$\ggg \int_0^\pi 2\pi x \sin x dx \ggg (2\pi x)(-\cos x) \Big|_0^\pi - \int_0^\pi 2\pi(-\cos x) dx$$

Compute first term:

$$\ggg -2\pi x \cos x \Big|_0^\pi$$

$$\ggg -2\pi(\pi)(-1) - -2\pi(0)(+1) \ggg 2\pi^2$$

Compute integral term:

$$-\int_0^\pi 2\pi(-\cos x) dx \ggg 2\pi \sin \Big|_0^\pi \ggg 0$$

So the answer is $2\pi^2$.

Integration by substitution (review only)

Videos

[Note: this section is non-examinable. It is included for comparison to IBP.]

- [Integration by Substitution 1](#): $\int \frac{-x}{(x+1)-\sqrt{x+1}} dx$
- [Integration by Substitution 2](#): $\int \frac{x^5}{(1-x^3)^3} dx$
- [Integration by Substitution 3](#): $\int_0^1 x^2(1+x)^4 dx$
- [Integration by Substitution 4](#): $\int \frac{2x+3}{\sqrt{2x+1}} dx$
- [Integration by Substitution 5](#): $\int \frac{\sin x}{\cos^3 x} dx$
- [Integration by Substitution](#): Definite integrals, various examples

03 Theory

The method of ***u*-substitution** is applicable when the integrand is a *product*, with one factor a composite whose *inner function's derivative* is the other factor.

Substitution

Suppose the integral has this format, for some functions f and u :

$$\int f(u(x)) \cdot u'(x) dx$$

Then the rule says we may convert the integral into terms of u considered as a variable, like this:

$$\int f(u(x)) \cdot u'(x) dx \ggg \int f(u) du$$

The technique of *u*-substitution comes from the **chain rule for derivatives**:

$$\frac{d}{dx} F(u(x)) = f(u(x)) \cdot u'(x)$$

Here we let $F' = f$. Thus $\int f(x) dx = F(x) + C$ for some C .

Now, if we *integrate both sides* of this equation, we find:

$$F(u(x)) = \int f(u(x)) \cdot u'(x) dx$$

And of course $F(u) = \int f(u) du - C$.

[Extra - Full explanation of \$u\$ -substitution](#) >

(1) Chain rule for derivatives:

Let $F(x)$ be a function and $F' = f$ its derivative. Let $u(x)$ be another function.

Using primes:

$$(F \circ u)' = (F' \circ u) \cdot u'$$

Using differentials:

$$\frac{d}{dx} F(u(x)) = f(u(x)) \cdot u'(x)$$

(2) Integrate both sides:

$$\begin{aligned} \frac{d}{dx} F(u(x)) &= f(u(x)) \cdot u'(x) && \gg\gg \\ && \int \frac{d}{dx} F(u(x)) &= \int f(u(x)) \cdot u'(x) \\ && \xrightarrow{\text{FTC}} & F(u(x)) = \int f(u(x)) \cdot u'(x) \end{aligned}$$

(3) Introduce ‘variable’ u from the u -format of the integral:

Treating u as a variable, the definition of F gives:

$$F(u) = \int f(u) du + C$$

Set the ‘variable’ u to the ‘function’ u output:

$$F(u) \Big|_{u=u(x)} = F(u(x))$$

Combine these:

$$\begin{aligned} F(u(x)) &= F(u) \Big|_{u=u(x)} \\ &= \int f(u) du \Big|_{u=u(x)} + C \end{aligned}$$

(4) Substitute for $F(u(x))$:

$$\int f(u(x)) \cdot u'(x) dx = F(u(x)) = \int f(u) du \Big|_{u=u(x)} + C$$

This is “ u -substitution” in final form.

Integration by parts

Videos

Videos:

- [Integration by Parts 1](#): $\int e^x dx$ and $\int \ln x dx$
- [Integration by Parts 2](#): $\int \tan^{-1} x dx$ and $\int x \sec x dx$
- [Integration by Parts 3](#): Definite integrals
- Example: $\int e^{3x} \cos 4x dx$, two methods:
 - [Double IBP](#)
 - [Fast Solution](#)
- [Integration by Parts 6](#): $\int \sec^5 x dx$

04 Theory

The method of **integration by parts** (abbreviated IBP) is applicable when the integrand is a *product* for which one factor is easily integrated while the other *becomes simpler* when differentiated.

Integration by parts

Suppose the integral has this format, for some functions u and v :

$$\int u \cdot v' dx$$

Then the rule says we may convert the integral like this:

$$\int u \cdot v' dx \ggg u \cdot v - \int u' \cdot v dx$$

This technique comes from the **product rule for derivatives**:

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

Now, if we *integrate both sides* of this equation, we find:

$$u \cdot v = \int u' \cdot v dx + \int u \cdot v' dx$$

and the IBP rule follows by algebra.

Extra - Full explanation of integration by parts

(1) Product rule for derivatives:

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

(2) Integrate both sides:

$$\begin{aligned}
 (u \cdot v)' &= u' \cdot v + u \cdot v' & \ggg & \int (u \cdot v)' dx = \int u' \cdot v dx + \int u \cdot v' dx \\
 && \ggg & u \cdot v = \int u' \cdot v dx + \int u \cdot v' dx & & \text{(FTC)} \\
 && \ggg & \int u \cdot v' dx = u \cdot v - \int u' \cdot v dx & & \text{(Rearrange)}
 \end{aligned}$$

☰ Definite IBP >

Definite version of FTC:

$$\begin{aligned}
 \int_a^b (u \cdot v)' dx &= u \cdot v \Big|_a^b \\
 \ggg \int_a^b u \cdot v' dx &= u \cdot v \Big|_a^b - \int_a^b u' \cdot v dx
 \end{aligned}$$

⌚ Choosing factors well

IBP is symmetrical. How do we know which factor to choose for u and which for v ?

Here is a trick: the acronym “LIATE” spells out the order of choices – to the left for u and to the right for v :

LIATE :

$u \leftarrow \text{Logarithmic} - \text{Inverse_trig} - \text{Algebraic} - \text{Trig} - \text{Exponential} \rightarrow v$

05 Illustration

☰ Example - A and T factors

Compute the integral: $\int x \cos x dx$

Solution

(1) Choose u and v' :

Set $u(x) = x$ because x *simplifies* when differentiated.

(By the trick: x is *Algebraic*, i.e. more “ u ”, and $\cos x$ is *Trig*, more “ v ”.)

Remaining factor must be $v' = \cos x$.

(2) Compute u' and v :

$$u = x \ggg u' = 1$$

$$v' = \cos x \ggg v = \sin x$$

Key chart:

$$\begin{array}{c|cc} u = x & v' = \cos x & \longrightarrow \int u \cdot v' & \text{original} \\ \hline u' = 1 & v = \sin x & \longrightarrow \int u' \cdot v & \text{final} \end{array}$$

(3) Evaluate IBP formula:

$$\begin{aligned} \int u'v \, dx &= uv - \int uv' \, dx \\ \ggg \int x \cos x \, dx &= x \sin x - \int 1 \cdot \sin x \, dx \\ \ggg x \sin x + \cos x + C \end{aligned}$$

⌚ Why IBP?

The *rationale* of IBP is that $\int 1 \cdot \sin x \, dx$ is easier to compute than $\int x \cos x \, dx$.

⌚ Exercise - Hidden A

Compute the integral:

$$\int \ln x \, dx$$

⤓ Solution >

(1) Choose $u = \ln x$:

Because Log is farthest left in LIATE.

Therefore we must choose $v'(x) = 1$.

(2) Compute u' and v :

We have $u' = \frac{1}{x}$ and $v = x$. Obtain chart:

$$\begin{array}{c|cc} u = \ln x & v' = 1 & \longrightarrow \int u \cdot v' & \text{original} \\ \hline u' = 1/x & v = x & \longrightarrow \int u' \cdot v & \text{final} \end{array}$$

(3) Evaluate IBP formula:

$$\begin{aligned} \int u'v \, dx &= uv - \int uv' \, dx \\ \ggg \int \ln x \cdot 1 \, dx &= x \ln x - \int \frac{1}{x} \cdot x \, dx \end{aligned}$$

Perform new integration:

$$-\int \frac{1}{x} \cdot x \, dx \ggg -\int 1 \, dx \ggg -x + C$$

Final answer is: $x \ln x - x + C$