
W09 - Notes
Simple divergence test

Videos

01 Theory

02 Illustration

Videos, Math Dr. Bob

Geometric series and SDT, again: Geometric series, Simple Divergence Test (aka “Limit
Test”)
Integral test: Basics
Integral test: p-series

​ Extra: Integral test: Further examples
Extra: Integral test: Estimations

Simple Divergence Test (SDT)

Applicability: Any series.

Test Statement:

lim
n→∞

an ≠ 0 ⟹

∞

∑
n=1

an diverges

AKA the “Not Even Close” test

The converse is not valid. For example, ∑∞

n=1

1

n
 diverges even though

limn→∞
1

n
= 0.

Example - Simple Divergence Test: examples

(a) Consider: 
∞

∑
n=1

n

4n+ 1

This diverges by the SDT because an → 1
4

 and not 0.

(b) Consider: 
∞

∑
n=1

(−1)n−1 n

n+ 1
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Positive series

Videos

03 Theory

This diverges by the SDT because limn→∞ an = DNE.

We can say the terms “converge to the pattern +1, −1, +1, −1, … ,” but that is not a limit
value.

Direct Comparison Test: Theory and basic examples
Direct Comparison Test: Series 1

lnn

Limit Comparison Test: Theory and basic examples
Limit Comparison Test: Further examples

The partial sum sequence SN  is monotone increasing for a positive series.

By the monotonicity test for convergence of sequences, SN  therefore converges whenever it is
bounded above. If SN  is not bounded above, then ∑∞

n=1 an diverges to +∞.

Another test, called the integral test, studies the terms of a series as if they represent
rectangles with upper corner pinned to the graph of a continuous function.

To apply the test, we must convert the integer index variable n in an into a continuous variable x
. This is easy when we have a formula for an (provided it doesn’t contain factorials or other
elements dependent on integrality).

Positive series

A series is called positive when its individual terms are positive, i.e. an > 0 for all n.

Integral Test (IT)

Applicability: f(x) must be:

Test Statement:

∞

∑
n=1

an converges ⟺ ∫
∞

1
f(x) dx converges

Continuous
Positive
Monotone decreasing

W09 - Notes

2 / 13

af://h2-8
af://h3-9
https://www.youtube.com/watch?v=lkHi2IZAJig
https://www.youtube.com/watch?v=zThp_EGKDAo
https://www.youtube.com/watch?v=Q4_ntBBtCsU
https://www.youtube.com/watch?v=uZ4PRMxdV5o
af://h3-11


Next we use the integral test to evaluate the family of p-series, and later we can use p-series in
comparison tests without repeating the work of the integral test.

Extra - Integral test: explanation

To show that integral convergence implies series convergence, consider the diagram:

This shows that ∑N
n=2 an ≤ ∫

N

1 f(x) dx for any N . Therefore, if ∫ ∞
1 f(x) dx converges, then

∫ N

1
f(x) dx is bounded (independent of N) and so ∑N

n=2 an is bounded by that inequality. But
∑N

n=2 an = SN − a1; so by adding a1 to the bound, we see that SN  itself is bounded, which
implies that ∑∞

n=1 an converges.

To show that integral divergence implies series divergence, consider a similar diagram:

This shows that ∑N−1
n=1 an ≥ ∫ N

1
f(x) dx for any N . Therefore, if ∫ ∞

1
f(x) dx diverges, then

∫
N

1 f(x) dx goes to +∞ as N → ∞, and so ∑N−1
n=1 an goes to +∞ as well. So ∑∞

n=1 an diverges.

Notice: the picture shows f(x) entirely above (or below) the rectangles. This depends upon
f(x) being monotone decreasing, as well as f(x) > 0. (This explains the applicability
conditions.)

p-series

A p-series is a series of this form: 
∞

∑
n=1

1

np

Convergence properties:

p > 1 : series converges p ≤ 1 : series diverges

Extra - Proof of p-series convergence

(1) To verify the convergence properties of p-series, apply the integral test:

Applicability: verify it’s continuous, positive, decreasing.

W09 - Notes

3 / 13



04 Illustration

Convert n to x to obtain the function f(x) = 1
xp .

Indeed 1
xp  is continuous and positive and decreasing as x increases.

(2) Apply the integral test.

Integrate, assuming p ≠ 1:

When p > 1 we have limR→∞
R−p+1

−p+1 = 0

When p < 1 we have limR→∞
R−p+1

−p+1 = ∞

When p = 1, integrate a second time:

Conclude: the integral converges when p > 1 and diverges when p ≤ 1.

We could instead immediately refer to the convergence results for p-integrals instead of
reproving them here.

∫
∞

1

1

xp
dx ≫≫ lim

R→∞

xp−1

p− 1

R

1

≫≫ lim
R→∞

( R−p+1

−p+ 1
−

1−p+1

−p+ 1
)∣∫

∞

1

1

x
dx ≫≫ lim

R→∞
lnx

R

1

≫≫ lim
R→∞

lnR− ln 1 ≫≫ ∞∣Example - p-series examples

By finding p and applying the p-series convergence properties:

We see that ∑∞
n=1

1
n1.1  converges: p = 1.1 so p > 1

But ∑∞
n=1

1
√n

 diverges: p = 1/2 so p ≤ 1

Example - Integral test - pushing the envelope of convergence

Does 
∞

∑
n=2

1

n lnn
 converge?
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05 Theory

Does 
∞

∑
n=2

1

n(lnn)2
 converge?

Notice that lnn grows very slowly with n, so 1
n lnn  is just a little smaller than 1

n  for large n,
and similarly 1

n(lnn)2
 is just a little smaller still.

Solution

(1) The two series lead to the two functions f(x) = 1
x lnx  and g(x) = 1

x(lnx)2
.

Check applicability.

Clearly f(x) and g(x) are both continuous, positive, decreasing functions on x ∈ [2,∞).

(2) Apply the integral test to f(x).

Integrate f(x):

Conclude: ∑∞
n=2

1
n lnn

 diverges.

(3) Apply the integral test to g(x).

Integrate g(x):

Conclude: ∑∞
n=2

1
n(lnn)2

 converges.

∫
∞

2

1

x lnx
dx ≫≫ ∫

∞

u=ln 2

1

u
du

≫≫ lim
R→∞

lnu
R

ln 1
≫≫ ∞∣∫

∞

2

1

x(lnx)2
dx ≫≫ ∫

∞

u=ln 2

1

u2
du

≫≫ lim
R→∞

−u−1
R

ln 2
≫≫

1

ln 2∣Direct Comparison Test (DCT)

Applicability: Both series are positive: an > 0 and bn > 0.

Test Statement: Suppose an ≤ bn for large enough n.
(Meaning: for n ≥ N  with some given N .) Then:

Smaller pushes up bigger:
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06 Illustration

∞

∑
n=1

an diverges ⟹

∞

∑
n=1

bn diverges

Bigger controls smaller:

∞

∑
n=1

bn converges ⟹

∞

∑
n=1

an converges

Example - Direct comparison test: rational functions

(a) 
∞

∑
n=1

1

√n 3n

Choose: an = 1
√n 3n

 and bn = 1
3n

Check: 1
√n 3n

≤ 1
3n

Observe: ∑ 1
3n  is a convergent geometric series

Therefore: converges by the DCT.

(b) 
∞

∑
n=1

cos2 n

n3

Choose: an = cos2 n
n3  and bn = 1

n3 .

Check: cos2 n
n3 ≤ 1

n3

Observe: ∑ 1
n3  is a convergent p-series

Therefore: converges by the DCT.

(c) 
∞

∑
n=1

n

n3 + 1

Choose: an = n

n3+1
 and bn = 1

n2

Check: n
n3+1 ≤ 1

n2  (notice that n
n3+1 ≤ n

n3 )

Observe: ∑ 1
n2  is a convergent p-series

Therefore: converges by the DCT.
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07 Theory

(d) 
∞

∑
n=2

1

n− 1

Choose: an = 1
n  and bn = 1

n−1

Check: 1
n ≤ 1

n−1

Observe: ∑ 1
n

 is a divergent p-series

Therefore: diverges by the DCT.

Some series can be compared using the DCT after applying certain manipulations and tricks.

For example, consider the series ∑∞
n=2

1
n2−1

. We suspect convergence because an ≈ 1
n2  for large n.

But unfortunately, an > 1
n2  always, so we cannot apply the DCT.

We could make some ad hoc arguments that do use the DCT, eventually:

Trick Method 1:

Trick Method 2:

These convoluted arguments suggest that a more general version of Comparison is possible.

Indeed, it is sufficient to compare the relative large-n behavior of the two series. We use the
termwise ratios to estimate comparative behavior for increasing n.

Observe that for n > 1 we have 1
n2−1

≤ 10
n2 . (Check it!)

But ∑ 10
n2  converges, indeed its value is 10 ⋅∑ 1

n2 , which is 10π2

6 .
So the series ∑ 1

n2−1
 converges.

Observe that we can change the letter n to n+ 1 by starting the new n at n = 1.
Then we have:

∞

∑
n=2

1

n2 − 1
=

∞

∑
n=1

1

(n+ 1)2 − 1
=

∞

∑
n=1

1

n2 + 2n

This last series has terms smaller than 1
n2  so the DCT with bn = 1

n2  (a convergent p-series)
shows that the original series converges too.

Limit Comparison Test (LCT)

Applicability: Both series are positive: an > 0 and bn > 0.

Test Statement: Suppose that limn→∞
an

bn
= L. Then:

If 0 < L < ∞, i.e. finite non-zero, then:

∑ an converges ⟺ ∑ bn converges
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08 Illustration

Extra - LCT edge cases

If L = 0 or L = ∞, we can still draw an inference, but only in one direction:

If L = 0:

∑ bn converges ⟹ ∑ an converges

If L = ∞:

∑ bn diverges ⟹ ∑ an diverges

Extra - Limit Comparison Test explanation

Suppose an/bn → L and 0 < L < ∞. Then for n sufficiently large, we know an/bn < L+ 1.

Doing some algebra, we get an < (L+ 1)bn for n large.

If ∑ bn converges, then ∑(L+ 1)bn also converges (constant multiple), and then the DCT
implies that ∑ an converges.

Conversely: we also know that bn/an → 1/L, so bn < (1/L+ 1)an for all n sufficiently large.
Thus if ∑ an converges, ∑(1/L+ 1)an also converges, and by the DCT again ∑ bn converges
too.

The cases with L = 0 or L = ∞ are handled similarly.

Example - Limit Comparison Test examples

(a) 
∞

∑
n=1

1

2n − 1

Choose: an = 1
2n−1  and bn = 1

2n .

Compare in the limit:

lim
n→∞

an

bn
≫≫ lim

n→∞

2n

2n − 1
≫≫ 1 =: L

Observe: ∑ 1
2n

 is a convergent geometric series

Therefore: converges by the LCT.

(b) 
∞

∑
n=1

2n2 + 3n

√5 + n5

Choose: an = 2n2+3n
√5+n5

, bn = 1
n1/2
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Alternating series

Videos

09 Theory

Compare in the limit:

lim
n→∞

an

bn
≫≫ lim

n→∞

(2n2 + 3n)√n

√5 + n5

(2n2 + 3n)√n

√5 + n5

n→∞
⟶

2n5/2

n5/2
→ 2 =: L

Observe: ∑ 1
n1/2  is a divergent p-series

Therefore: diverges by the LCT.

(c) 
∞

∑
n=2

n2

n4 − n− 1

Choose: an = n2

n4−n−1
 and bn = 1

n2

Compare in the limit:

lim
n→∞

an

bn
≫≫ lim

n→∞

n4

n4 − n− 1
≫≫ 1 =: L

Observe: ∑∞
n=2

1
n2  is a converging p-series

Therefore: converges by the LCT.

Videos, Math Dr. Bob:

Alternating Series Test: Theory and basic examples
Alternating Series Test: Remainder estimates
Alternating Series Test: Further remainder estimates

Consider these series:

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+⋯ = ∞

−1 −
1

2
−

1

3
−

1

4
−

1

5
−

1

6
−

1

7
−⋯ = −∞

1−
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+

1

7
−⋯ = ln 2

1 +
1

2
−

1

3
+

1

4
−

1

5
−

1

6
+

1

7
+⋯ = ?

W09 - Notes

9 / 13

af://h2-24
af://h3-25
https://www.youtube.com/watch?v=bwUxyxqUU8A
https://www.youtube.com/watch?v=MbAqIj3nrgU
https://www.youtube.com/watch?v=CTJ-_DpZhmw
af://h3-27


The absolute values of terms are the same between these series, only the signs of terms change.

The first is a positive series because there are no negative terms.

The second series is the negation of a positive series – the study of such series is equivalent to
that of positive series, just add a negative sign everywhere. These signs can be factored out of
the series. (For example ∑− 1

n = −∑ 1
n .)

The third series is an alternating series because the signs alternate in a strict pattern, every
other sign being negative.

The fourth series is not alternating, nor is it positive, nor negative: it has a mysterious or
unknown pattern of signs.

A series with any negative signs present, call it ∑∞
n=1 an, converges absolutely when the

positive series of absolute values of terms, namely ∑∞
n=1 |an|, converges.

A series might converge due to the presence of negative terms and yet not converge absolutely:

A series ∑∞
n=1 an is said to be converge conditionally when the series converges as it stands,

but the series produced by inserting absolute values, namely ∑∞
n=1 |an|, diverges.

The alternating harmonic series above, 1 − 1
2 + 1

3 − 1
4 +⋯ = ln 2, is therefore conditionally

convergent. Let us see why it converges. We can group the terms to create new sequences of
pairs, each pair being a positive term. This can be done in two ways. The first creates an
increasing sequence, the second a decreasing sequence:

Suppose SN  gives the sequence of partial sums of the original series. Then S2N  gives the first
sequence of pairs, namely S2, S4, S6, … . And S2N−1 gives the second sequence of pairs, namely
S1, S3, S5, … .

The second sequence shows that SN  is bounded above by 1, so S2N  is monotone increasing and
bounded above, so it converges. Similarly S2N−1 is monotone decreasing and bounded below, so it
converges too, and of course they must converge to the same thing.

The fact that the terms were decreasing in magnitude was an essential ingredient of the
argument for convergence. This fact ensured that the parenthetical pairs were positive numbers.

THEOREM: Absolute implies ordinary

If a series ∑∞
n=1 an converges absolutely, then it also converges as it stands.

increasing from 0: (1 −
1

2
)+ ( 1

3
−

1

4
)+ ( 1

5
−

1

6
)+ ( 1

7
−

1

8
)+⋯

decreasing from 1: 1 − ( 1

2
−

1

3
)− ( 1

4
−

1

5
)− ( 1

6
−

1

7
)−⋯

Alternating Series Test (AST) - “Leibniz Test”

Applicability: Alternating series only: ∑∞
n=1(−1)n−1an with an > 0

Test Statement:
If:

W09 - Notes

10 / 13



10 Illustration

Then:
∞

∑
n=1

(−1)n−1an converges

“Next Term Bound” rule for error of the partial sums:

|S − SN | ≤ aN+1

1. an → 0 as n → ∞ (i.e. it passes the SDT: if this fails, conclude diverges)
2. an are decreasing, so a1 > a2 > a3 > a4 > ⋯ > 0

Extra - Alternating Series Test: Theory

Just as for the alternating harmonic series, we can form positive paired-up series because
the terms are decreasing:

The first sequence S2N  is monotone increasing from 0, and the second S2N−1 is decreasing
from a1. The first is therefore also bounded above by a1. So it converges. Similarly, the
second converges. Their difference at any point is S2N − S2N−1 which is equal to −a2N , and
this goes to zero. So the two sequences must converge to the same thing.

By considering these paired-up sequences and the effect of adding each new term one after
the other, we obtain the following order relations:

0 < S2 < S4 < S6 < ⋯ < S < ⋯ < S5 < S3 < S1 = a1

Thus, for any even 2N  and any odd 2M − 1:

S2N < S < S2M−1

Now set M = N  and subtract S2N−1 from both sides:

Now set M = N + 1 and subtract S2N  from both sides:

This covers both even cases (n = 2N) and odd cases (n = 2N − 1). In either case, we have:

|S − Sn| < an+1

(a1 − a2) + (a3 − a4) + (a5 − a6) +⋯

a1 − (a2 − a3) − (a4 − a5) − (a6 − a7) −⋯

S2N − S2N−1 < S − S2N−1 < 0

≫≫ −a2N < S − S2N−1 < 0

0 < S − S2N < S2N+1 − S2N

≫≫ 0 < S − S2N < a2N+1

Example - Alternating Series Test: Basic illustration
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(a) 
∞

∑
n=1

(−1)n−1

√n
 converges by the AST.

Notice that ∑ 1
√n

 diverges as a p-series with p = 1/2 < 1.

Therefore the first series converges conditionally.

(b) 
∞

∑
n=1

cosnπ

n2
 converges by the AST.

Notice the funny notation: cosnπ = (−1)n.

This series converges absolutely because cosnπ
n2 = 1

n2 , which is a p-series with p = 2 > 1.∣ ∣Example - Approximating π

The Taylor series for tan−1 x is given by:

tan−1 x = x−
x3

3
+

x5

5
−

x7

7
+⋯

Use this series to approximate π with an error less than 0.001.

Solution

(1) The main idea is to use tan π
4 = 1 and thus tan−1 1 = π

4 . Therefore:

π

4
= 1 −

1

3
+

1

5
−

1

7
+⋯

and thus:

π = 4 −
4

3
+

4

5
−

4

7
+⋯

(2) Write En for the error of the approximation, meaning En = S − Sn.

By the AST error formula, we have |En| < an+1.

We desire n such that |En| < 0.001. Therefore, calculate n such that an+1 < 0.001, and then
we will know:

|En| < an+1 < 0.001

(3) The general term is an = 4
2n−1 . Plug in n+ 1 in place of n to find an+1 = 4

2n+1 . Now solve:
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We conclude that at least 2000 terms are necessary to be confident (by the error formula)
that the approximation of π is accurate to within 0.001.

an+1 =
4

2n+ 1
< 0.001

≫≫
4

0.001
< 2n+ 1

≫≫ 3999 < 2n

≫≫ 2000 ≤ n
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