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Simple divergence test

Videos

Videos, Math Dr. Bob

Geometric series and SDT, again: Geometric series, Simple Divergence Test (aka “Limit
Test”)
Integral test: Basics
Integral test: p-series
Extra: Integral test: Further examples

Extra: Integral test: Estimations

01 Theory

8% Simple Divergence Test (SDT)
Applicability: Any series.

Test Statement:
o0
1i_>m an #0 = Z a, diverges
n o0 n=1

AKA the “Not Even Close” test

o 1
n=1 n

/\ The converse is not valid. For example, 5
lim,, % = 0.

diverges even though

02 Illustration

:= Example - Simple Divergence Test: examples

n
n+1

(a) Consider: Z

n=1

This diverges by the SDT because a,, — % and not 0.

n
n+1

(b) Consider: i(—l)”’l
n=1

1/13


af://h1-0
af://h2-1
af://h3-2
https://www.youtube.com/watch?v=h84pokHK-JU
https://www.youtube.com/watch?v=F2R5hXXMP24
https://www.youtube.com/watch?v=DaE9WrsEmDw
https://www.youtube.com/watch?v=m53wTpmiRmw
https://www.youtube.com/watch?v=qj0SoBqazIA
af://h3-4
af://h3-6

WO09 - Notes

This diverges by the SDT because lim;_,« a, = DNE.

We can say the terms “converge to the pattern +1, —1, +1, —1, ...,” but that is not a limit

value.

Positive series

Direct Comparison Test: Theory and basic examples

Direct Comparison Test: Series ﬁ

Limit Comparison Test: Theory and basic examples

Limit Comparison Test: Further examples

A series is called positive when its individual terms are positive, i.e. a,, > 0 for all n.

The partial sum sequence Sy is monotone increasing for a positive series.

By the monotonicity test for convergence of sequences, Sy therefore converges whenever it is
bounded above. If Sy is not bounded above, then Y oo | a, diverges to +oo.

Another test, called the integral test, studies the terms of a series as if they represent
rectangles with upper corner pinned to the graph of a continuous function.

To apply the test, we must convert the integer index variable n in a, into a continuous variable z
. This is easy when we have a formula for a, (provided it doesn’t contain factorials or other
elements dependent on integrality).

Applicability: f(z) must be:

Continuous
Positive

Monotone decreasing

Test Statement:

o0

Zan converges = / f(z)dz converges
1

n=1
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To show that integral convergence implies series convergence, consider the diagram:

This shows that >N , a, < |, lN f(z) dz for any N. Therefore, if [* f(z) dz converges, then
le f(z) dz is bounded (independent of N) and so 22’:2 a,, is bounded by that inequality. But
Z,ILQ an, = Sy — a1; so by adding a; to the bound, we see that Sy itself is bounded, which
implies that > | a, converges.

To show that integral divergence implies series divergence, consider a similar diagram:

y

This shows that YY" "a, > [ 1N f(z) dz for any N. Therefore, if [° f(z) dx diverges, then

le f(z) dz goes to +oo as N — oo, and so Y0 a,, goes to +oo as well. So 3%, a,, diverges.

Notice: the picture shows f(z) entirely above (or below) the rectangles. This depends upon
f(z) being monotone decreasing, as well as f(z) > 0. (This explains the applicability
conditions.)

Next we use the integral test to evaluate the family of p-series, and later we can use p-series in
comparison tests without repeating the work of the integral test.

o0
e & . . 1
A p-series is a series of this form: —
n=1 e
Convergence properties:
p > 1 : series converges p < 1: series diverges

(1) To verify the convergence properties of p-series, apply the integral test:

Applicability: verify it’s continuous, positive, decreasing.
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Convert n to z to obtain the function f(z) = =

TP

Indeed % is continuous and positive and decreasing as x increases.

(2) Apply the integral test.

Integrate, assuming p # 1:

R

© 1 mpfl
/ —dz >> lim
1 xP R—o00 P — 1

1

pr+1 1-pt+l
>>  lim =

: R
When p > 1 we have limg_, > =0

. —p+1
When p < 1 we have limp_.o —}_{pil =00

When p = 1, integrate a second time:

— 00

/ —dxr >> lim lnzx
1 T R 1
>> lim mR—-Inl >>» o
R—o0

Conclude: the integral converges when p > 1 and diverges when p < 1.

We could instead immediately refer to the convergence results for p-integrals instead of
reproving them here.

04 Illustration

:= Example - p-series examples

By finding p and applying the p-series convergence properties:
We see that Y% | —1+ converges:p=1.1s0p > 1

But >, ﬁ diverges: p=1/2sop <1

:= Example - Integral test - pushing the envelope of convergence

= 1
Does Z converge?
“—= nlnn
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o0
1
Does 22 W converge?

Notice that Inn grows very slowly with n, so —— is just a litle smaller than % for large n,

nlnn
and similarly —L; is just a little smaller still.
n(lnn)
Solution
(1) The two series lead to the two functions f(z) = —— and g(z) = m

Check applicability.

Clearly f(z) and g(z) are both continuous, positive, decreasing functions on z € [2, ).

(2) Apply the integral test to f(z).

Integrate f(x):

© 1 © 1
/ de >> / —du
9 xlnz u—ln2 U

R
>>  lim lnu‘ >> oo
R—00 In1

Conclude: Y%, —L— diverges.

(3) Apply the integral test to g(z).

Integrate g(z):

© 1 © 1
/ ——dz >> / — du
5 z(lnz)? u=n2 U’

. B 1
>>  lim —u 1‘ > ——
R—o00 In2 In2

Conclude: >, m converges.

Applicability: Both series are positive: a, > 0 and b, > 0.

Test Statement: Suppose a,, < b, for large enough n.

(Meaning: for n > N with some given N.) Then:

Smaller pushes up bigger:
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Nt
S

o0
Z an diverges — diverges
n=1

i
L

Bigger controls smaller:

Nt

o0
Z b, converges —

n=1

a, converges

3
Il
—

06 Illustration

‘= Example - Direct comparison test: rational functions

. 1
Choose: a,, = T and b, = 3n
1 < 1
Vngn — 3"

Observe: Y 3—1n is a convergent geometric series

Therefore: converges by the DCT.

> cos2n
b)Y —
n=1

and b, = #

COS n

Choose: a,, =

2
. C£os 1
Check: 2n <5
Observe: Y —733 is a convergent p-series

Therefore: converges by the DCT.

® n
© > ——
; n3 +1
Choose: a, = 5 and b, = %

Check: —*~ T < % (notice that ngLH < %)

Observe: Y # 1s a convergent p-series

Therefore: converges by the DCT.
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& 1
@ 7=

Choose: a,, = % and b, = ﬁ

Check: + < -

n—1
Observe: Y L is a divergent p-series

n

Therefore: diverges by the DCT.

Some series can be compared using the DCT after applying certain manipulations and tricks.

For example, consider the series > o>, ﬁ We suspect convergence because a,, ~ % for large n.

But unfortunately, a,, > # always, so we cannot apply the DCT.
We could make some ad hoc arguments that do use the DCT, eventually:

Trick Method 1:

Observe that for n > 1 we have == < %. (Check it!)

n’—1

10 ; ; ; 1 ioh e lor
But )’ -3 converges, indeed its value is 10 - } | -5, which is <¢-.

So the series Y n217 T converges.

Trick Method 2:

Observe that we can change the letter n to n + 1 by starting the new n at n = 1.

Then we have:

o0 o0 o0
S - ST - S
4 n?—-1 ~(n+1)2-1 = n?+2n

This last series has terms smaller than # so the DCT with b, = # (a convergent p-series)

shows that the original series converges too.
These convoluted arguments suggest that a more general version of Comparison is possible.

Indeed, it is sufficient to compare the relative large-n behavior of the two series. We use the

termwise ratios to estimate comparative behavior for increasing n.

Applicability: Both series are positive: a, > 0 and b, > 0.

Test Statement: Suppose that lim,, Z—" = L. Then:

n
If 0 < L < o0, i.e. finite non-zero, then:

E an, converges — E b, converges
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If L =0o0r L = oo, we can still draw an inference, but only in one direction:
If L =0:
Z b, converges = Z a, converges
If L = oo:

an diverges — Zan diverges

Suppose an/b, — L and 0 < L < co. Then for n sufficiently large, we know a, /b, < L + 1.
Doing some algebra, we get a,, < (L + 1)b,, for n large.

If > b, converges, then ) (L + 1)b, also converges (constant multiple), and then the DCT
implies that > a,, converges.

Conversely: we also know that b,/a, — 1/L, so b, < (1/L + 1)a, for all n sufficiently large.
Thus if " a, converges, Y (1/L + 1)a, also converges, and by the DCT again ) b, converges
too.

The cases with L = 0 or L = co are handled similarly.

‘= Example - Limit Comparison Test examples

o g
)
@ ;2”71

Choose: a,, = 271—14 and b, = 2%

Compare in the limit:

n

. ap . 2
hmb— >> hmﬂ >> 1 =1L

n—o0 n n—oo —_
Observe: > 2% is a convergent geometric series

Therefore: converges by the LCT.

2n% + 3n
b
()Z Ve

2
2n°43n b, =

c 1
Choose: a,, = = bn = o
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Compare in the limit:

n

. a .
lim — >> lim

(2n% + 3n)y/n

(2n% +3n)yn  noco 2052
V5 +nb nb/2

Observe: 3_ —7 is a divergent p-series

Therefore: diverges by the LCT.

— 2 =

L

o0 2
© T

n=2

. n? 1
Choose: a,, = T and b, = -7

Compare in the limit:

g Qn . n
lim . >>»  lim —F/———— >>

n—0o by, nooo nt —n—1

Observe: Y °°, -1 is a converging p-series

n

Therefore: converges by the LCT.

Alternating series

Videos, Math Dr. Bob:

Alternating Series Test: Theory and basic examples

Alternating Series Test: Remainder estimates

Alternating Series Test: Further remainder estimates

Consider these series:

ot 1 1 1t 1. 1
2 3 4 5 6 7
RS N B S S
2 '3 4 5 6 7
RRE U S S
3 4 6 7
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The absolute values of terms are the same between these series, only the signs of terms change.
The first is a positive series because there are no negative terms.

The second series is the negation of a positive series — the study of such series is equivalent to
that of positive series, just add a negative sign everywhere. These signs can be factored out of
the series. (For example Y- —4 = -3~ 1))

n

The third series is an alternating series because the signs alternate in a strict pattern, every

other sign being negative.

The fourth series is not alternating, nor is it positive, nor negative: it has a mysterious or

unknown pattern of signs.

A series with any negative signs present, call it }>° , a,,, converges absolutely when the

positive series of absolute values of terms, namely Y-, |a,|, converges.

THEOREM: Absolute implies ordinary

If a series >, a,, converges absolutely, then it also converges as it stands.

A series might converge due to the presence of negative terms and yet not converge absolutely:

A series Y 2 ; a, is said to be converge conditionally when the series converges as it stands,
but the series produced by inserting absolute values, namely > " |a,|, diverges.

The alternating harmonic series above, 1 — % + % — % + .-+ = In2, is therefore conditionally

convergent. Let us see why it converges. We can group the terms to create new sequences of
pairs, each pair being a positive term. This can be done in two ways. The first creates an

increasing sequence, the second a decreasing sequence:

increasing from 0: 1—l + 11 + 11 + 1.1 4.
& ' 2 3 4 5 6 78
) 1 1 1 1 1 1

decreasing from 1: 1— (5 — §> — (Z — g> — (6 - 7) ...

Suppose Sy gives the sequence of partial sums of the original series. Then S,y gives the first
sequence of pairs, namely S5, Sy, S, ... . And Syy_; gives the second sequence of pairs, namely
S1, 83, S5, ... .

The second sequence shows that Sy is bounded above by 1, so Sy 1s monotone increasing and
bounded above, so it converges. Similarly Syy_; 1s monotone decreasing and bounded below, so it
converges too, and of course they must converge to the same thing.

The fact that the terms were decreasing in magnitude was an essential ingredient of the
argument for convergence. This fact ensured that the parenthetical pairs were positive numbers.

Applicability: Alternating series only: Y- (-1)"'a, with a, > 0

Test Statement:
If:
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a, — 0 asn — oo (i.e. it passes the SDT: if this fails, conclude diverges)

an are decreasing, soa; > az >ag > a4 > -+ >0

Then:
(o]
Z(—l)"ilan converges
n=1

“Next Term Bound” rule for error of the partial sums:

|S — Sn| < ani1

Just as for the alternating harmonic series, we can form positive paired-up series because

the terms are decreasing:

(a1 —as2) + (a3 — aq) + (a5 —ag) + - --

a1 — (a2 —a3) — (as —as) — (ag —ay) — -+~

The first sequence Ssxy is monotone increasing from 0, and the second Syy_1 is decreasing
from a;. The first is therefore also bounded above by a;. So it converges. Similarly, the
second converges. Their difference at any point is Soy — S2y—1 which is equal to —a2y, and
this goes to zero. So the two sequences must converge to the same thing.

By considering these paired-up sequences and the effect of adding each new term one after
the other, we obtain the following order relations:

0< 8 <8 <8< - <8< - <85<85<85 =a;
Thus, for any even 2N and any odd 2M — 1:
San < 8 < Samr-1

Now set M = N and subtract Sy5_; from both sides:

Son — Son-1 <8 —Son-1 <0

> —aan < S—-Swn1<0
Now set M = N + 1 and subtract Sy from both sides:

0<S— SN < Soni1— Son
>>  0< 8- Sy < a1

This covers both even cases (n = 2N) and odd cases (n = 2N — 1). In either case, we have:

|S_ Sn‘ < Qp+1

:= Example - Alternating Series Test: Basic illustration
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n—1

o~ (-1
(a) ——~— converges by the AST.
2

Notice that > ﬁ diverges as a p-series withp =1/2 < 1.

Therefore the first series converges conditionally.

n?

(b) Z cos T converges by the AST.
n=1

Notice the funny notation: cosnm = (—1)".

This series converges absolutely because ‘ cos | = #, which is a p-series with p = 2 > 1.

:= Example - Approximating =

The Taylor series for tan~! z is given by:

tan lg =2 - -+ 2 2 ...
an "r == 3—|—5 7+

Use this series to approximate m with an error less than 0.001.
Solution

(1) The main idea is to use tan § = 1 and thus tan™! 1 = Z. Therefore:

ZE——]__.1.+.1 __l.+...

4 3 5 7
and thus:

7r—4—é+é—i+

o 3 5 7

(2) Write E, for the error of the approximation, meaning E,, = S — S,,.
By the AST error formula, we have |E,| < an41.

We desire n such that |E,| < 0.001. Therefore, calculate n such that a,+1 < 0.001, and then

we will know:

|En| < ans1 < 0.001

(3) The general term is a,, = #“_1. Plug in n + 1 in place of n to find a, 11 = ﬁ. Now solve:
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A1 = < 0.001

2n+1

4
— <2 1
>> 0.001 < 2n+

>> 3999 < 2n

>> 2000 < n

We conclude that at least 2000 terms are necessary to be confident (by the error formula)
that the approximation of 7 is accurate to within 0.001.
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