

W12 - Notes

Parametric curves

Videos

Videos, Organic Chemistry Tutor

- [Intro to parametric equations and graphing](#)

01 Theory

Parametric curves are curves traced by the path of a ‘moving’ point. An independent parameter, such as t for ‘time’, controls *both x and y* values through **Cartesian coordinate functions** $x(t)$ and $y(t)$. The coordinates of the moving point are $(x(t), y(t))$.

⊕ Parametric curve

A **parametric curve** is a function from parameter space \mathbb{R} to the plane \mathbb{R}^2 given in terms of coordinate functions:

$$t \mapsto (x(t), y(t))$$

⚠ Other notations

Be aware that sometimes the coordinate functions are written with f and g (or yet other letters) like this:

$$(x, y) = (f(t), g(t))$$

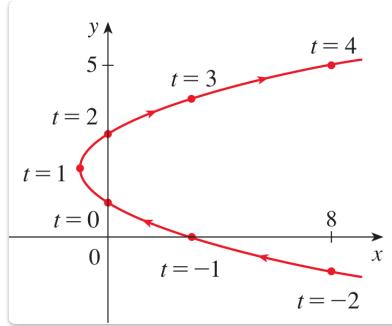
Or simply equating coordinate letters with functions: $x = f(t)$, $y = g(t)$

Sometimes a different parameter is used, like s or u .

For example, suppose:

$$x = t^2 - 2t, \quad y = t + 1$$

The curve traced out is a parabola that opens horizontally:



Given a parametric curve, we can create an equation satisfied by x and y variables by solving for t in either coordinate function (inverting either f or g) and plugging the result into the other function.

In the example:

$$\begin{aligned}
 y &= t + 1 \quad \ggg \quad t = y - 1 \\
 \ggg \quad x &= t^2 - 2t \quad \ggg \quad x = (y - 1)^2 - 2(y - 1) \\
 \ggg \quad x &= y^2 - 4y + 3 \quad \ggg \quad x = (y - 2)^2 - 1
 \end{aligned}$$

This is the equation of a parabola centered at $(-1, 2)$ that opens to the right.

Image of a parametric curve

The **image** of a parametric curve is the *set* of output points $(x(t), y(t))$ that are traversed by the moving point.

A parametric curve has *hidden information* that isn't contained in the image:

- The *time values* t when the moving point is found in various locations.
- The *speed* at which the curve is traversed.
- The *direction* in which the curve is traversed.

We can **reparametrize** a parametric curve to use a different parameter or different coordinate functions while leaving the *image unchanged*.

In the previous example, shift t by 1:

$$\begin{aligned}
 x &= (t + 1)^2 - 2(t + 1), \quad y = (t + 1) + 1 \\
 \ggg \quad x &= t^2 - 1, \quad y = t + 2
 \end{aligned}$$

Since the parameter t and the parameter $t + 1$ both cover the same values for $t \in (-\infty, \infty)$, the same curve is traversed. But the moving point in the second, shifted version reaches any given location *one unit earlier* in time. (When $t = -1$ in the second version, the input to $x(t)$ and $y(t)$ is the same as when $t = 0$ in the first one.)

02 Illustration

☰ Example - Parametric circles

The standard equation of a circle of radius R centered at the point (h, k) :

$$(x - h)^2 + (y - k)^2 = R^2$$

This equation says that the *distance* from a point (x, y) on the circle to the center point (h, k) equals R . This fact defines the circle.

Parametric coordinates for the circle:

$$x = h + R \cos t, \quad y = k + R \sin t, \quad t \in [0, 2\pi)$$

For example, the unit circle $x^2 + y^2 = 1$ is parametrized by $x = \cos t$ and $y = \sin t$.

☰ Example - Parametric lines

(1) Parametric coordinate functions for a line:

$$x = a + rt, \quad y = b + st, \quad t \in (-\infty, +\infty)$$

Compare this to the graph of linear function:

$$y = mx + b \quad \text{some } m, b$$

Vertical lines cannot be described as the graph of a function. We must use $x = a$.

(2) Parametric lines can describe all lines equally well, including horizontal and vertical lines.

A vertical line $x = a$ is achieved by setting $s = 0$ and $r \neq 0$.

A horizontal line $y = b$ is achieved by setting $r = 0$ and $s \neq 0$.

A non-vertical line $y = mx + b$ may be achieved by setting $s = m$ and $r = 1$, and $a = 0$.

(3) Assuming that $r \neq 0$, the parametric coordinate functions describe a line satisfying:

$$y = b + s \left(\frac{x - a}{r} \right)$$

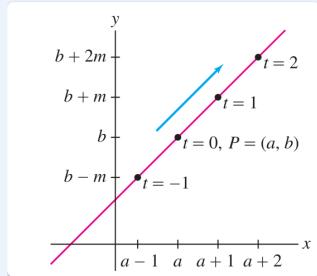
$$\ggg y = \frac{s}{r} \cdot x + \left(b - \frac{s}{r} \cdot a \right)$$

and therefore the slope is $m = \frac{s}{r}$ and the y -intercept is $b - \frac{s}{r} \cdot a$.

(4) The point-slope construction of a line has a parametric analogue:

point-slope line:

$$y - a = m(x - b) \quad (x, y) = (a + t, b + mt)$$



Example - Parametric ellipses

The general equation of an ellipse centered at (h, k) with half-axes a and b is:

$$\left(\frac{x-h}{a}\right)^2 + \left(\frac{y-k}{b}\right)^2 = 1$$

This equation represents a *stretched unit circle*:

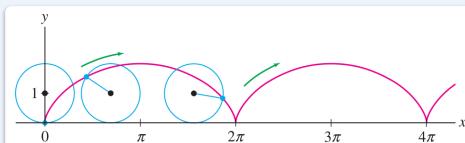
- by a in the x -axis
- by b in the y -axis

Parametric coordinate functions for the general ellipse:

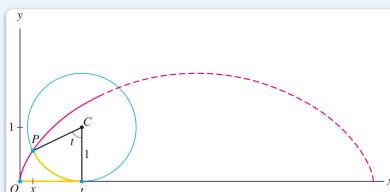
$$x = h + a \cos t, \quad y = k + b \sin t, \quad t \in [0, 2\pi)$$

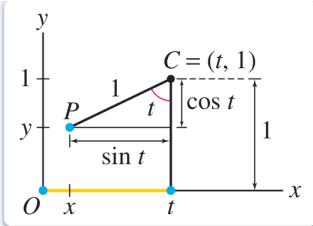
Example - Parametric cycloids

The cycloid is the curve traced by a pen attached to the rim of a wheel as it rolls.



It is easy to describe the cycloid parametrically. Consider the geometry of the situation:





The center C of the wheel is moving rightwards at a constant speed of 1, so its position is $(t, 1)$. The angle is revolving at the same constant rate of 1 (in *radians*) because the *radius* is 1.

The triangle shown has base $\sin t$, so the x coordinate is $t - \sin t$. The y coordinate is $1 - \cos t$.

So the coordinates of the point $P = (x, y)$ are given parametrically by:

$$x = t - \sin t, \quad y = 1 - \cos t, \quad t > 0$$

If the circle has another radius, say R , then the parametric formulas change to:

$$x = Rt - R \sin t, \quad y = R - R \cos t, \quad t > 0$$

Calculus with parametric curves

03 Theory - Slope, concavity

We can use $x(t)$ and $y(t)$ data to compute the slope of a parametric curve in terms of t .

Slope formula

Given a parametric curve $(x(t), y(t))$, its slope satisfies:

$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} \quad (\text{where } x'(t) \neq 0)$$

Concavity formula

Given a parametric curve $(x(t), y(t))$, its concavity satisfies the formula:

$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{y'(t)}{x'(t)} \right) \cdot \frac{1}{x'(t)} \quad (\text{where } x'(t) \neq 0)$$

Extra - Derivation of slope and concavity formulas

For both derivations, it is necessary to view t as a function of x through the inverse parameter function. For example if $x = f(t)$ is the parametrization, then $t = f^{-1}(x)$ is the inverse parameter function.

We will need the derivative $\frac{dt}{dx}$ in terms of t . For this we use the formula for derivative of inverse functions:

$$\frac{dt}{dx} = \frac{1}{\frac{dx}{dt}}$$

Given all this, both formulas are simple applications of the chain rule.

For the slope:

$$\begin{aligned} \frac{dy}{dx} &= \frac{dy}{dt} \cdot \frac{dt}{dx} \quad \ggg \quad y'(t) \cdot \frac{1}{dx/dt} \\ &\ggg \quad \frac{y'(t)}{x'(t)} \end{aligned}$$

For the concavity:

$$\begin{aligned} \frac{d^2y}{dx^2} &= \frac{d}{dx} \left(\frac{dy}{dx} \right) \quad \ggg \quad \frac{d}{dt} \left(\frac{dy}{dx} \right) \cdot \frac{dt}{dx} \\ &\ggg \quad \frac{d}{dt} \left(\frac{y'(t)}{x'(t)} \right) \cdot \frac{1}{x'(t)} \end{aligned}$$

(In the second step we inserted the formula for $\frac{dy}{dx}$ from the slope.)

☒ Pure vertical, Pure horizontal movement

In view of the formula $\frac{dy}{dx} = \frac{y'(t)}{x'(t)}$, we see:

- Pure vertical: when $x'(t) = 0$ and yet $y'(t) \neq 0$
- Pure horizontal: when $y'(t) = 0$ and yet $x'(t) \neq 0$

When $x'(t_0) = y'(t_0) = 0$ for the same $t = t_0$, we have a **stationary point**, which might subsequently progress into pure vertical, pure horizontal, or neither.

04 Illustration

☰ Example - Tangent to a cycloid

Find the tangent line (described parametrically) to the cycloid $(4t - 4 \sin t, 4 - 4 \cos t)$ when $t = \pi/4$.

Solution

(1) Compute x' and y' .

Find $x'(t)$ and $y'(t)$:

$$x(t) = 4t - 4 \sin t \quad \ggg \quad x'(t) = 4 - 4 \cos t$$

$$y(t) = 4 - 4 \cos t \quad \ggg \quad y'(t) = 4 \sin t$$

(2) Plug in $t = \pi/4$:

$$x'(\pi/4) \ggg 4 - 4 \cos(\pi/4) \ggg 4 - 2\sqrt{2}$$

$$y'(\pi/4) \ggg 4 \sin(\pi/4) \ggg 2\sqrt{2}$$

(3) Apply formula: $\frac{dy}{dx} = \frac{y'}{x'}$:

Calculate $\frac{dy}{dx}$ at $t = \pi/4$:

$$\frac{dy}{dx}(\pi/4) = \frac{y'(\pi/4)}{x'(\pi/4)} \ggg \frac{2\sqrt{2}}{4 - 2\sqrt{2}}$$

$$\ggg \frac{2\sqrt{2}}{4 - 2\sqrt{2}} \cdot \frac{4 + 2\sqrt{2}}{4 + 2\sqrt{2}}$$

$$\ggg \frac{8\sqrt{2} + 8}{16 - 8} \ggg \sqrt{2} + 1$$

So:

$$\frac{dy}{dx} \Big|_{t=\pi/4} = \sqrt{2} + 1$$

This is the slope m for our line.

(4) Need the point P for our line. Find (x, y) at $t = \pi/4$.

Plug $t = \pi/4$ into parametric formulas:

$$\begin{aligned} (x(t), y(t)) \Big|_{t=\pi/4} &\ggg \left(4 \frac{\pi}{4} - 4 \sin(\pi/4), 4 - 4 \cos(\pi/4)\right) \\ &\ggg (\pi - 2\sqrt{2}, 4 - 2\sqrt{2}) \end{aligned}$$

(5) Point-slope formulation of tangent line:

$$x = a + t, \quad y = b + mt$$

Inserting data:

$$x = (\pi - 2\sqrt{2}) + t, \quad y = (4 - 2\sqrt{2}) + (\sqrt{2} + 1)t$$

☰ Example - Vertical and horizontal tangents of the circle

Consider the circle parametrized by $x = \cos t$ and $y = \sin t$. Find the points where the tangent lines are vertical or horizontal.

Solution

(1) For the points with vertical tangent line, we find where the moving point has $x'(t) = 0$ (purely vertical motion):

$$x'(t) = -\sin t,$$

$$x'(t) = 0 \quad \ggg \quad -\sin t = 0$$

$$\ggg \quad t = 0, \pi$$

The moving point is at $(1, 0)$ when $t = 0$, and at $(-1, 0)$ when $t = \pi$.

(2) For the points with horizontal tangent line, we find where the moving point has $y'(t) = 0$ (purely horizontal motion):

$$y'(t) = \cos t,$$

$$y'(t) = 0 \quad \ggg \quad \cos t = 0$$

$$\ggg \quad t = \frac{\pi}{2}, \frac{3\pi}{2}$$

The moving point is at $(0, 1)$ when $t = \pi/2$, and at $(0, -1)$ when $t = 3\pi/2$.

Example - Finding the point with specified slope

Consider the parametric curve given by $(x, y) = (t^2, t^3)$. Find the point where the slope of the tangent line to this curve equals 5.

Solution

(1) Compute the derivatives:

$$x'(t) = 2t, \quad y'(t) = 3t^2$$

Therefore the slope of the tangent line, in terms of t :

$$m = \frac{dy}{dx} = \frac{y'(t)}{x'(t)}$$

$$\ggg \quad \frac{3t^2}{2t} \quad \ggg \quad \frac{3}{2}t$$

(2) Set up equation:

$$m = 5$$

$$\frac{3}{2}t = 5$$

$$\ggg t = \frac{10}{3}$$

(3) Find the point:

$$(x, y) \Big|_{t=10/3} \ggg \left(\frac{100}{9}, \frac{1000}{27} \right)$$