W01 Notes

Volume using cylindrical shells

Videos

Review

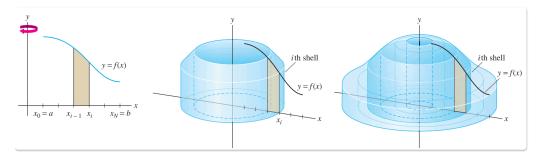
- Volume using cross-sectional area
- Disk/washer method 01
- Disk/washer method 02
- Disk/washer method 03

Shells

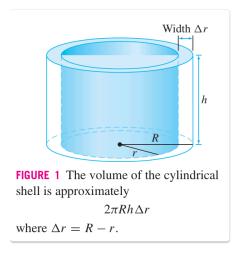
- Shell method 01
- Shell method 02
- Shell method 03

01 Theory

Take a graph y = f(x) in the first quadrant of the xy-plane. Rotate this about the y-axis. The resulting 3D body is symmetric around the axis. We can find the volume of this body by using an integral to add up the volumes of infinitesimal **shells**, where each shell is a *thin cylinder*.



The volume of each cylindrical shell is $2\pi R h \Delta r$:



In the limit as $\Delta r \to dr$ and the number of shells becomes infinite, their total volume is given by an integral.

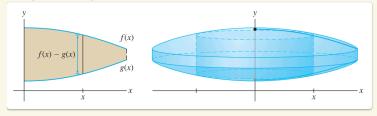
B Volume by shells - general formula

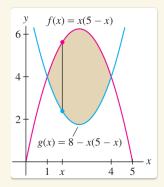
$$V=\int_a^b 2\pi R h\, dr$$

In any concrete volume calculation, we simply interpret each factor, 'R' and 'h' and 'dr', and determine a and b in terms of the variable of integration that is set for r.

& Shells vs. washers

Can you see why shells are sometimes easier to use than washers?





02 Illustration

≡ Example - Revolution of a triangle

A rotation-symmetric 3D body has cross section given by the region between y = 3x + 2, y = 6 - x, x = 0, and is rotated around the *y*-axis. Find the volume of this 3D body.

Solution

(1) Define the cross section region.

Bounded above-right by y = 6 - x.

Bounded below-right by y = 3x + 2.

\triangle These intersect at x = 1.

Bounded at left by x = 0.

(2) Define range of integration variable.

Rotated around y-axis, therefore use x for integration variable (shells!).

Integral over $x \in [0,1]$:

$$V=\int_0^1 2\pi R h\, dr$$

(3) Interpret R.

Radius of shell-cylinder equals distance along x:

$$R(x) = x$$

(4) Interpret h.

Height of shell-cylinder equals distance from lower to upper bounding lines:

$$h(x) = (6-x) - (3x+2)$$

= $4-4x$

(5) Interpret dr.

dr is limit of Δr which equals Δx here so dr = dx.

(6) Plug data in volume formula.

Insert data and compute integral:

$$egin{aligned} V &= \int_0^1 2\pi R h \, dr \ &= \int_0^1 2\pi \cdot x (4-4x) \, dx \ &= 2\pi \left(2x^2 - rac{4x^3}{3}
ight)igg|_0^1 = rac{4\pi}{3} \end{aligned}$$

Exercise - Revolution of a sinusoid

Consider the region given by revolving the first hump of $y = \sin(x)$ about the y-axis. Set up an integral that gives the volume of this region using the method of shells.

Solution

Integration by substitution

Videos

[Note: this section is non-examinable. It is included for comparison to IBP.]

- Integration by Substitution 1: $\int \frac{-x}{(x+1)-\sqrt{x+1}} dx$
- Integration by Substitution 2: $\int \frac{x^5}{(1-x^3)^3} dx$

• Integration by Substitution 3: $\int_0^1 x^2 (1+x)^4 dx$

• Integration by Substitution 4: $\int \frac{2x+3}{\sqrt{2x+1}} dx$

• Integration by Substitution 5: $\int \frac{\sin x}{\cos^3 x} dx$

• Integration by Substitution: Definite integrals, various examples

03 Theory

The method of *u*-substitution is applicable when the integrand is a *product*, with one factor a composite whose *inner function's derivative* is the other factor.

B Substitution

Suppose the integral has this format, for some functions f and u:

$$\int f(u(x)) \cdot u'(x) \, dx$$

Then the rule says we may convert the integral into terms of u considered as a variable, like this:

$$\int f(u(x)) \cdot u'(x) \, dx \quad \gg \quad \int f(u) \, du$$

The technique of *u*-substitution comes from the **chain rule for derivatives**:

$$rac{d}{dx} Fig(u(x)ig) = f(u(x)) \cdot u'(x)$$

Here we let F' = f. Thus $\int f(x) dx = F(x) + C$ for some C.

Now, if we *integrate both sides* of this equation, we find:

$$Fig(u(x)ig) = \int f(u(x)) \cdot u'(x) \, dx$$

And of course $F(u) = \int f(u) du - C$.

\blacksquare Extra - Full explanation of u-substitution

(1) The substitution method comes from the **chain rule for derivatives**. The rule simply comes from *integrating on both sides* of the chain rule.

Setup: functions F' = f and u(x).

Let F and f be any functions satisfying F' = f, so F is an antiderivative of f.

Let u be another function and take x for its independent variable, so we can write u(x).

(2) The chain rule for derivatives.

Using primes notation:

$$ig(F\circ uig)'=(F'\circ u)\cdot u'$$

Using differentials in variables:

$$rac{d}{dx}Fig(u(x)ig)=f(u(x))\cdot u'(x)$$

(3)

△ Integrate both sides of chain rule.

Integrate with respect to x:

$$\frac{d}{dx}F\big(u(x)\big) = f(u(x)) \cdot u'(x) \qquad \stackrel{\int}{\gg} \qquad \int \frac{d}{dx}F\big(u(x)\big) = \int f(u(x)) \cdot u'(x)$$

$$\stackrel{\text{FTC}}{\gg} \qquad F(u(x)) = \int f(u(x)) \cdot u'(x)$$

(4) Introduce 'variable' u from the u-format of the integral.

Treating u as a variable, the definition of F gives:

$$F(u) = \int f(u) \, du + C$$

Set the 'variable' *u* to the 'function' *u* output:

$$F(u)\,\Big|_{u=u(x)}=F(u(x))$$

Combining these:

$$egin{aligned} F(u(x)) &= F(u) \, \Big|_{u=u(x)} \ \ &= \int f(u) \, du \, \Big|_{u=u(x)} + C \end{aligned}$$

(5) Substitute for F(u(x)) in the integrated chain rule.

Reverse the equality and plug in:

$$\int f(u(x))\cdot u'(x)\,dx = F(u(x)) = \int f(u)\,du\,igg|_{u=u(x)} + C$$

This is "u-substitution" in final form.

Integration by parts

Videos

Videos:

- Integration by Parts 1: $\int e^x dx$ and $\int \ln x dx$
- Integration by Parts 2: $\int \tan^{-1} x \, dx$ and $\int x \sec x \, dx$
- <u>Integration by Parts 3</u>: Definite integrals
- Example: $\int e^{3x} \cos 4x \, dx$, two methods:
 - Double IBP
 - Fast Solution
- Integration by Parts 6: $\int \sec^5 x \, dx$

04 Theory

The method of **integration by parts** (abbreviated IBP) is applicable when the integrand is a *product* for which one factor is easily integrated while the other *becomes simpler* when differentiated.

⊞ Integration by parts

Suppose the integral has this format, for some functions u and v:

$$\int u \cdot v' \, dx$$

Then the rule says we may convert the integral like this:

$$\int u \cdot v' \, dx \gg u \cdot v - \int u' \cdot v \, dx$$

This technique comes from the product rule for derivatives:

$$ig(u\cdot vig)'=u'\cdot v+u\cdot v'$$

Now, if we integrate both sides of this equation, we find:

$$u\cdot v = \int u'\cdot v\,dx + \int u\cdot v'\,dx$$

and the IBP rule follows by algebra.

Extra - Full explanation of integration by parts

(1) Setup: functions u and v' are established.

Recognize functions u(x) and v'(x) in the integrand:

$$\int u \cdot v' \, dx$$

(2) Product rule for derivatives.

Using primes notation:

$$ig(u\cdot vig)'=u'\cdot v+u\cdot v'$$

(3)

△ Integrate both sides of product rule.

Integrate with respect to an input variable labeled 'x':

$$egin{aligned} ig(u\cdot vig)' = u'\cdot v + u\cdot v' & \gg \gg \end{aligned} \int ig(u\cdot vig)'\,dx = \int u'\cdot v\,dx + \int u\cdot v'\,dx \end{aligned}$$

$$\gg \gg u \cdot v = \int u' \cdot v \, dx + \int u \cdot v' \, dx$$

Rearrange with algebra:

$$\int u \cdot v' \, dx = u \cdot v - \int u' \cdot v$$

(4) This is "integration by parts" in final form.

Addendum: definite integration by parts

Definite version of FTC.

Apply FTC to $u \cdot v$:

$$\int_{a}^{b}ig(u\cdot vig)'\,dx=u\cdot v\,\Big|_{a}^{b}$$

(5) Integrate the derivative product rule using specified bounds.

Perform definite integral on both sides, plug in definite FTC, then rearrange:

$$\int_a^b u \cdot v' \, dx = u \cdot v \, \Big|_a^b - \int_a^b u' \cdot v \, \Big|_a^b$$

Observe Schools Choosing factors well

IBP is symmetrical. How do we know which factor to choose for u and which for v?

Here is a trick: the acronym "LIATE" spells out the order of choices – to the left for u and to the right for v:

LIATE:

 $u \leftarrow \operatorname{Logarithmic-Inverse_trig-Algebraic-Trig-Exponential} \rightarrow v$

05 Illustration

≡ Example - A and T factors

Compute the integral: $\int x \cos x \, dx$

Solution

(1) Choose u = x.

Set u(x) = x because x simplifies when differentiated.

(By the trick: x is Algebraic, i.e. more "u", and $\cos x$ is Trig, more "v".)

Remaining factor must be v':

$$v'(x) = \cos x$$

(2) Compute u' and v.

Derive u:

$$u'=1$$

Antiderive v':

 $v = \sin x$

Obtain chart:

$$\begin{array}{c|cccc} u = x & v' = \cos x & \longrightarrow & \int u \cdot v' & \text{ original } \\ \hline u' = 1 & v = \sin x & \longrightarrow & \int u' \cdot v & \text{ final } \end{array}$$

(3) Plug into IBP formula.

Plug in all data:

$$\int x \cos x \, dx = x \sin x - \int 1 \cdot \sin x \, dx$$

Compute integral on RHS:

$$\int x\cos x\,dx = x\sin x + \cos x + C$$

Note: the *point* of IBP is that this integral is easier than the first one!

(4) Final answer is: $x \sin x + \cos x + C$

🗒 Exercise - Hidden A

Compute the integral:

$$\int \ln x \, dx$$

Solution