Calculus II - Lecture notes - W06

Moments and center of mass

Videos

Videos, Math Dr. Bob:

- Moments and CoM 01: Points masses on a line
- Moments and CoM 02: Points masses in the plane
- Moments and CoM 03: Planar lamina of uniform density
- Moments and CoM 04: Integral formula for planar lamina
- Moments and CoM 05: Rod of non-uniform density

03 Theory

⊞ Moment

The **moment** of a region to an axis is the total (integral) of mass times distance to that axis:

The moment of a region to an axis is the total (integral) of mass times distance to
$$M$$
 Moment to x :

$$M_{x} = \int \rho y \, dA \quad \text{(general formula)}$$

$$M_{x} = \int_{c}^{d} \rho y \, \left(g_{2}(y) - g_{1}(y)\right) \, dy \quad \text{(region between functions } g_{2} \text{ and } g_{1})$$

Moment to y:

$$M_y \,=\, \int
ho\, x\, dA \qquad ext{(general formula)}$$
 $M_y \,=\, \int_a^b
ho\, x\, ig(f_2(x)-f_1(x)ig)\, dx \qquad ext{(region between functions } f_2 ext{ and } f_1)$

∧ Notice the swap in letters

- M_y integrand has x factor
- M_x integrand has y factor

Notice the total mass

If you remove x or y factors from the integrands, the integrals give total mass M.

These formulas are obtained by slicing the region into rectangular strips that are parallel to the axis in question.

The area *per strip* is then:

- f(x) dx region under y = f(x)
- $(f_2 f_1) dx$ region between f_1 and f_2
- g(y) dy region 'under' x = g(y)
- $(g_2 g_1) dy$ region between g_1 and g_2

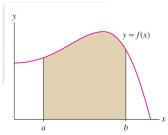


FIGURE 5 Lamina occupying the region under the graph of f(x) over [a, b].

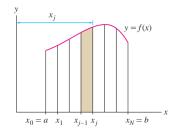
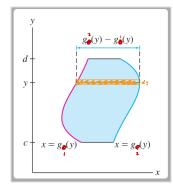


FIGURE 6 The shaded strip is nearly rectangular of area with $f(x_i)\Delta x$.



$$M_{x} = \int_{c}^{d} A y dA$$

$$= \int_{c}^{d} A y (9.-9.) dy$$

The idea of moment is related to:

- · Torque balance and angular inertia
- · Center of mass

The center of mass (CoM) of a solid body is a single point with two important properties:

- 1. CoM = "average position" of the body
 - The average position determines an *effective center* of dynamics. For example, gravity acting on every bit of mass of a rigid body acts the same as a force on the CoM alone.
- 2. CoM = "balance point" of the body
 - The net *torque* (rotational force) about the CoM, generated by a force distributed over the body's mass, equivalently a force on the CoM, is zero.

Centroid

When the body has *uniform density*, then the CoM is also called the **centroid**.

B Center of mass from moments

Coordinates of the CoM:

$$ar{x}=rac{M_y}{M}, \qquad ar{y}=rac{M_x}{M}$$

Here M is the total mass of the body.

Notice how these formulas work. The total mass is always $M = \int \rho \, dA$. The moment to y (for example) is $M_y = \int \rho \, x \, dA$. Dividing these two values:

$$ar{x} = rac{M_y}{M} \quad \gg \gg \quad rac{\int
ho \, x \, dA}{\int
ho \, dA} \quad \gg \gg \quad rac{\int x \, dA}{\int \, dA} \quad \gg \gg \quad rac{\int x \, dA}{A} \quad \equiv \ rac{1}{A} \int x \, dA$$

where A = total area.

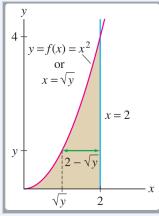
$$\hat{f} = \frac{1}{A} \int f dA$$

In other words, through the formula $\bar{x} = \frac{M_y}{M}$, we find that \bar{x} is the average value of x over the region with area A.

04 Illustration

≡ Example - CoM of a parabolic plat

Find the CoM of the region depicted:



Solution

(1) Compute the total mass:

 $\int \rho dA = \int_{0}^{2} \rho (f_{1} - f_{1}) dx$ $f_{1} = x^{2}$ $f_{2} = 0$

Area under the curve with density factor ρ :

$$M = \int_0^2
ho \, x^2 \, dx \quad \gg \gg \quad
ho \, rac{x^3}{3} igg|_0^2 \quad \gg \gg \quad rac{8
ho}{3}$$

(2) Compute M_y :

Formula:

$$M_y = \int_a^b
ho \, x \, dA$$

Interpret and calculate:

$$M_y = \int_0^2
ho \, x f(x) \, dx \quad \gg \gg \quad
ho \int_0^2 x^3 \, dx$$
 $\gg \gg \quad 4
ho = M_y$

(3) Compute M_x :

Formula:

$$M_x = \int_c^d \rho y \, dA \qquad = \qquad \int_c^2 \rho \, \frac{1}{2} \left(\gamma^2 - O^2 \right)^2 \, dx$$

Width of horizontal strips between the curves:

$$w(y)=2-\sqrt{y}$$

eurves: $w(y) = 2 - \sqrt{y}$ $= \rho \frac{\chi^{5}}{10} \Big|^{2} = \rho \frac{32}{10} = \frac{16\rho}{5}$

Interpret dA:

$$dA = (2 - \sqrt{y}) \, dy$$

Calculate integral:

$$egin{align} M_x &= \int_c^d
ho \, y \, dA \quad \gg \gg \quad \int_0^4
ho \, y (2 - \sqrt{y}) \, dy \ &\gg \gg \quad \int_0^4
ho \, y (2 - \sqrt{y}) \, dy \quad \gg \gg \quad \int_0^4
ho \, 2y \, dy - \int_0^4
ho \, y^{3/2} \, dy \ &\gg \gg \quad rac{16
ho}{5} = M_x \ \end{gathered}$$

(4) Compute CoM coordinates from moments:

CoM formulas:

$$ar{x}=rac{M_y}{M}, \qquad ar{y}=rac{M_x}{M}$$

Insert data:

$$ar{x}=rac{4
ho}{8
ho/3}$$
 $\gg\gg$ $rac{3}{2},$ $ar{y}=rac{16
ho/5}{8
ho/3}$ $\gg\gg$ $rac{6}{5}$ $m CoM$ $=$ $(ar{x},ar{y})=$ $\left(rac{3}{2},rac{6}{5}
ight)$

05 Theory

A downside of the technique above is that to find M_x we needed to convert the region into functions in y. This would be hard to do if the region was given as the area under a curve y = f(x) but $f^{-1}(y)$ cannot be found analytically. An alternative formula can help in this situation.

Midpoint of strips for opposite variables

When the region lies between $f_1(x)$ and $f_2(x)$, we can find M_x with an x-integral:

$$M_x = \int_a^b
ho \, rac{1}{2} \left(f_2^2 - f_1^2
ight) dx \qquad ext{(region between } f_1 ext{ and } f_2 ext{)}$$

When the region lies between $g_1(y)$ and $g_2(y)$, we can find M_y with a y-integral:

$$M_y = \int_c^d
ho \, rac{1}{2} ig(g_2^2 - g_1^2 ig) \, dy \qquad ext{(region between } g_1 ext{ and } g_2 ig)$$

& Region under a curve

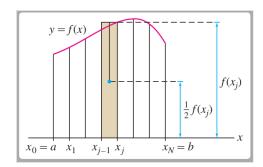
For the region "under the curve" y = f(x), just set:

$$f_1 = 0, \quad f_2 = f$$

For the region "under the curve" x = g(x), set:

$$g_1=0,\quad g_2=g$$

The idea for these formulas is to treat each vertical strip as a point concentrated at the CoM of the vertical strip itself.



The height to this midpoint is $\frac{1}{2}f(x)$, and the area of the strip is $f(x)\,dx$, so the integral becomes $\int \rho\,\frac{1}{2}f(x)^2\,dx$.

• If the strip is located at some x, with y values from 0 up to f(x), then:

CoM of strip
$$=\left(x,\, \frac{1}{2}f(x)\right)$$

• The area of the strip is dA = f(x) dx. So the integral formula for M_x can be recast:

$$M_x = \int y \, dA \quad \gg \gg \quad \int_a^b rac{1}{2} f(x) \cdot f(x) \, dx \quad \gg \gg \quad \int_a^b rac{1}{2} f^2 \, dx$$

• If the vertical strips are between $f_1(x)$ and $f_2(x)$, then the *midpoints* of the strips are given by the 'average' function:

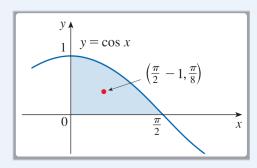
$$\frac{1}{2}\Big(f_1(x)+f_2(x)\Big)$$

- The *height* of each strip is $f_2(x) f_1(x)$, so $dA = (f_2 f_1) dx$.
- Putting this together:

06 Illustration

Example - Computing CoM using only vertical strips

Find the CoM of the region:



$$M_{\chi} = \int_{0}^{\pi/2} \frac{1}{2} \mu \cos^{2} x \, dx$$

$$M_{\chi} = \int_{0}^{\pi/2} \frac{1}{2} \mu \cos^{2} x \, dx$$

$$M_{\chi} = \int_{0}^{\pi/2} \rho \cos x \, dx = \rho$$

$$M = \int_{0}^{\pi/2} \rho \cos x \, dx = \rho$$

Solution

(1) Compute the total mass M:

Area under the curve times density ρ :

$$\int_0^{\pi/2}
ho\,\cos x\,dx=
ho\sin x\Big|_0^{\pi/2}=
ho$$

(2) Compute M_y using vertical strips:

Plug $f(x) = \cos x$ into formula:

$$M_y = \int_a^b
ho \, x \, f(x) \, dx \quad \gg \gg \quad \int_0^{\pi/2}
ho \, x \cos x \, dx$$

Integration by parts. Set $u=x, v'=\cos x$ and so $u'=1, v=\sin x$:

$$\int_0^{\pi/2}
ho \, x \cos x \, dx \quad \gg \gg \quad
ho \, x \sin x \Big|_0^{\pi/2} -
ho \, \int_0^{\pi/2} \sin x \, dx$$

$$\gg\gg \frac{\pi
ho}{2}\cdot 1-
ho\left(-\cosrac{\pi}{2}--\cos0
ight)=
ho\left(rac{\pi}{2}-1
ight)$$

(3) Compute M_x , also using vertical strips:

Plug $f_2(x) = f(x) = \cos x$ and $f_1(x) = 0$ into formula:

$$M_x = \int_0^{\pi/2}
ho \, rac{1}{2} f_2^2 \, dx \quad \gg \gg \quad \int_0^{\pi/2}
ho \, rac{1}{2} {
m cos}^2 \, x \, dx$$

Integration by 'power to frequency conversion':

$$\int_0^{\pi/2}
ho \, frac{1}{2} {\cos^2 x} \, dx \quad \gg \gg \quad rac{
ho}{4} \int_0^{\pi/2} (1 + \cos 2x) \, dx$$

$$\gg \gg \frac{\rho}{4} x \Big|_0^{\pi/2} + \frac{\rho \sin 2x}{8} \Big|_0^{\pi/2} = \frac{\pi \rho}{8}$$

(4) Compute CoM:

CoM formulas:

$$ar{x}=rac{M_y}{M}, \qquad ar{y}=rac{M_x}{M}$$

Plug in data:

$$ar{x} = rac{
ho(\pi/2-1)}{
ho} \quad \gg \gg \quad rac{\pi}{2}-1$$

$$ar{y} = rac{\pi
ho/8}{
ho} \quad \gg \gg \quad rac{\pi}{8}$$

$$CoM = (\bar{x}, \bar{y}) = \left(\frac{\pi}{2} - 1, \frac{\pi}{8}\right)$$

07 Theory

Two useful techniques for calculating moments and (thereby) CoMs:

- Additivity principle
- Symmetry

Additivity says that you can *add moments of parts* of a region to get the *total moment* of the region (to a given axis).

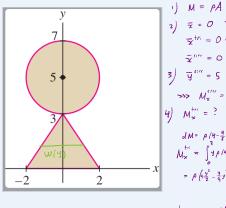
A symmetry principle is that if a region is mirror symmetric across some line, then the CoM must

lie on that line.

08 Illustration

≡ Example - Center of mass using moments and symmetry

Find the center of mass of the two-part region:



1)
$$M = \rho A = \rho (4\pi + 6)$$

2) $\overline{x} = 0$ $M_y = 0$
 $\overline{x}^{th} = 0 = M_y^{th}$ by symmetry
 $\overline{x}^{un} = 0 = M_y^{un}$
1) $\overline{y}^{un} = 5 = \frac{M_y^{un}}{M_{un}^{un}} = \frac{2}{\rho y_u^{un}}$

$$M_{+1}^{\times} = \frac{1}{3} M_{+1} + \frac{1}{3} M_{+1} + \frac{1}{3} M_{+1} = \frac{1}{3} M_{+1} + \frac{1}{3} M_{+1} + \frac{1}{3} M_{+1} = \frac{1}{3} M_{+1} + \frac{1}{3}$$

Solution

(1) Symmetry: CoM on y-axis

Because the region is symmetric in the y-axis, the CoM must lie on that axis. Therefore $\bar{x}=0$.

(2) Additivity of moments:

Write M_x for the total x-moment (distance measured to the x-axis from above).

Write M_x^{tri} and M_x^{circ} for the *x*-moments of the triangle and circle.

Additivity of moments equation:

$$M_x = M_x^{
m tri} + M_x^{
m circ}$$

(3) Find moment of the circle M_x^{circ} :

By symmetry we know $ar{x}^{
m circ}=0.$

By symmetry we know $\bar{y}^{\rm circ}=5$.

Area of circle with r=2 is $A=4\pi$, so total mass is $M=4\pi\rho$.

Centroid-from-moments equation:

$$ar{y}^{
m circ} = rac{M_x^{
m circ}}{M}$$

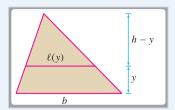
Solve the equation for M_x^{circ} :

$$ar{y}^{
m circ} = rac{M_x^{
m circ}}{M} \quad \gg \gg \quad 5 = rac{M_x^{
m circ}}{4\pi
ho}$$

$$\gg \gg ~~M_x^{
m circ} = 20\pi
ho$$

(4) Find moment of the triangle $M_x^{\rm tri}$ using integral formula:

Similar triangles:



Quick linear interpolation function:

$$\ell(y) \ = \ 0 + rac{b-0}{h}(-y+h)$$

$$\gg \gg \ell(y) = b - \frac{b}{h}y$$

Thus:

$$M_x^{ ext{tri}} =
ho \int_0^h y \, \ell(y) \, dy \quad \gg \gg \quad
ho \int_0^h y \, \left(b - rac{b}{h} y
ight) dy$$

$$\gg\gg \left. \rho \left(\frac{by^2}{2} - \frac{by^3}{3h} \right) \right|_0^h \gg \infty \frac{\rho bh^2}{6}$$

Conclude:

$$M_x^{
m tri}$$
 >>> $\frac{
ho bh^2}{6}$ >>> $\frac{
ho 4\cdot 3^2}{6}$ >>> $6
ho$

(5) Apply additivity:

$$M_x = M_x^{
m tri} + M_x^{
m circ} \quad \gg \gg \quad
ho(20\pi + 6)$$

(6) Total mass of region:

Area of circle is 4π . Area of triangle is $\frac{1}{2} \cdot 4 \cdot 3 = 6$. Thus $M = \rho A = \rho (4\pi + 6)$.

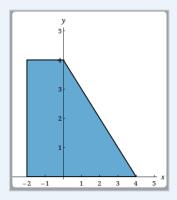
(7) Compute center of mass \bar{y} from total M_x and total M:

We have $M_x = \rho(20\pi + 6)$ and $M = \rho(4\pi + 6)$. Plug into formula:

$$ar{y} = rac{M_x}{M} \quad \gg \gg \quad rac{
ho(20\pi+6)}{
ho(4\pi+6)} pprox 3.71$$

Example - Center of mass - two part region

Find the center of mass of the region which combines a rectangle and triangle (as in the figure) by computing separate moments. What are those separate moments? Assume the mass density is $\rho = 1$.



Solution

(1) Apply symmetry to rectangle:

By symmetry, the center of mass of the rectangle is located at (-1,2).

Thus $ar{x}^{ ext{rect}} = -1$ and $ar{y}^{ ext{rect}} = 2$.

(2) Find moments of the rectangle:

Total mass of rectangle = $M^{\mathrm{rect}} = \rho \times \mathrm{area} = 1 \cdot 8 = 8$. Thus:

$$ar{x}^{
m rect} = rac{M_y^{
m rect}}{M^{
m rect}} \hspace{1cm} \gg \gg \hspace{1cm} M_y^{
m rect} = -8$$

$$ar{y}^{
m rect} = rac{M_x^{
m rect}}{M^{
m rect}} \hspace{1cm} \gg \gg \hspace{1cm} M_x^{
m rect} = 16$$

(3) Find moments of the triangle:

Area of vertical slice $=\left(4-\frac{4}{4}x\right)dx$. Distance from y-axis =x. Total M_y^{tri} integral:

$$M_y^{
m tri} \quad \gg \gg \quad \int_0^4
ho x \left(4 - rac{4}{4} x
ight) dx$$

$$\gg \gg \int_0^4 1 \cdot (4-x)x \, dx = \frac{32}{3}$$

Total $M_x^{\rm tri}$ integral:

$$M_x^{
m tri} = \int_0^4
ho rac{1}{2} f(x)^2 \, dx \quad \gg \gg \quad \int_0^4
ho rac{1}{2} \left(4 - rac{4}{4} x
ight)^2 dx$$

$$\gg \gg 1 \cdot \frac{1}{2} \int_0^4 (16 - 8x + x^2) \, dx \gg 2$$

(4) Add up total moments:

General formulas: $M_x = M_x^{
m tri} + M_x^{
m rect}$ and $M_y = M_y^{
m tri} + M_y^{
m rect}$

Plug in data: $M_x=rac{32}{3}+16=rac{80}{3}$ and $M_y=rac{32}{3}-8=rac{8}{3}$

(5) Find center of mass from moments:

Total mass of triangle $=M^{\mathrm{tri}}=
ho imes \mathrm{area}=1\cdot rac{1}{2}\cdot 4\cdot 4=8.$

Total combined mass = $M = M^{\rm tri} + M^{\rm rect} = 8 + 8 = 16$.

Apply moment relation:

$$ar{x} = rac{M_y}{M} \quad \gg \gg \quad rac{8/3}{16} \quad \gg \gg \quad rac{1}{6}$$

$$ar{y} = rac{M_x}{M} \quad \gg \gg \quad rac{80/3}{16} \quad \gg \gg \quad rac{5}{3}$$

$$\mathrm{CoM} \ = \ (ar{x},ar{y}) = egin{pmatrix} rac{1}{6},rac{5}{3} \end{pmatrix}$$

Improper integrals

Videos

Videos, Math Dr. Bob:

• Improper integrals: Infinite limits

• Improper integrals: Vertical asymptote

• Improper integrals: $\int \frac{1}{x^p} dx$

• Improper integrals: $\int \frac{1}{x^2} e^{-1/x} dx$

03 Theory

Improper integrals are those for which either a *bound* or the *integrand* itself become *infinite* somewhere on the interval of integration.

Examples:

(a)
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx$$
, (b) $\int_{0}^{2} \frac{1}{x} dx$, (c) $\int_{-1}^{+1} \frac{1}{x^{2}} dx$

- (a) the upper bound is ∞
- (b) the integrand goes to ∞ as $x \to 0^+$
- (c) the integrand is ∞ at the point $0 \in [-1, 1]$

The limit interpretation of (a) is this:

$$\int_1^\infty \frac{1}{x^2} dx = \lim_{R \to \infty} \int_1^R \frac{1}{x^2} dx$$

The limit interpretation of (b) is this:

$$\int_0^2 rac{1}{x} \, dx \quad = \quad \lim_{R
ightarrow 0^+} \int_R^2 rac{1}{x} \, dx$$

The limit interpretation of (c) is this:

$$\int_{-1}^{+1} \frac{1}{x^2} dx = \int_{-1}^{0} \frac{1}{x^2} dx + \int_{0}^{+1} \frac{1}{x^2} dx$$

$$= \lim_{R \to 0^{-}} \int_{-1}^{R} \frac{1}{x^2} dx + \lim_{R \to 0^{+}} \int_{R}^{+1} \frac{1}{x^2} dx$$

$$= \lim_{R \to 0^{-}} \int_{-1}^{R} \frac{1}{x^2} dx + \lim_{R \to 0^{+}} \int_{R}^{+1} \frac{1}{x^2} dx$$

$$= \lim_{R \to 0^{-}} \int_{-1}^{R} \frac{1}{x^2} dx + \lim_{R \to 0^{+}} \int_{R}^{+1} \frac{1}{x^2} dx$$

$$= \lim_{R \to 0^{-}} \int_{-1}^{R} \frac{1}{x^2} dx + \lim_{R \to 0^{+}} \int_{R}^{+1} \frac{1}{x^2} dx$$
sing the usual methods.
$$= \lim_{R \to 0^{-}} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{2}{R} = \frac{2}{R}$$

These limits are evaluated using the usual methods.

An improper integral is said to be **convergent** or **divergent** according to whether it may be assigned a finite value through the appropriate *limit interpretation*.

For example, (a) converges while (b) diverges.

04 Illustration

≡ Example - Improper integral - infinite bound

Show that the improper integral $\int_2^\infty \frac{dx}{x^3}$ converges. What is its value?

Solution

(1) Replace infinity with a new symbol R:

Compute the integral:

$$\int_{2}^{R} \frac{dx}{x^{3}} = -\frac{1}{2}x^{-2}\bigg|_{2}^{R} = \frac{1}{8} - \frac{1}{2R^{2}}$$

(2) Take limit as $R \to \infty$:

$$\lim_{R\to\infty}\frac{1}{8}-\frac{1}{2R^2}=\frac{1}{8}$$

(3) Improper integral definition:

$$\int_2^\infty \frac{dx}{x^3} \quad \gg \gg \quad \lim_{R \to \infty} \int_2^R \frac{dx}{x^3} \quad \gg \gg \quad \frac{1}{8}$$

Therefore that $\int_2^\infty \frac{dx}{x^3}$ converges and equals 1/8.

≔ Improper integral - infinite integrand

Show that the improper integral $\int_0^9 \frac{dx}{\sqrt{x}}$ converges. What is its value?

$$\lim_{R\to 0} \int_{R} \frac{dx}{\sqrt{x}}$$

Solution

(1) Replace the 0 where $\frac{1}{\sqrt{x}}$ diverges with a new symbol a:

$$\int_{m z}^9 rac{dx}{\sqrt{x}} \gg \gg \int_{m z}^9 x^{-1/2} \, dx$$
 $\gg \gg 2x^{+1/2} \Big|_a^9 \gg \gg 6 - 2\sqrt{a}$

(2) Take limit as $a \to 0^+$:

$$\lim_{a o 0^+}6-2\sqrt{a}=6$$

(3) Improper integral definition:

$$\int_{\color{red} 6}^{9} \frac{dx}{\sqrt{x}} \quad \gg \gg \quad \lim_{a \to 0^{+}} \int_{a}^{9} \frac{dx}{\sqrt{x}} \quad \gg \gg \quad 6$$

Conclude that $\int_0^9 \frac{dx}{\sqrt{x}}$ converges to 6.

≡ Example - Improper integral - infinity inside the interval

Does the integral $\int_{-1}^{+1} \frac{1}{x} dx$ converge or diverge?

Solution

(1) WRONG APPROACH:

It is *tempting* to compute the integral *incorrectly*, like this:

$$\int_{-1}^{+1} \frac{1}{x} dx = \ln|x| \Big|_{-1}^{+1} = \ln|2| - \ln|-2| = 0$$

But this is wrong. There is an infinite integrand at x = 0. We must instead break it into parts.

(2) Identify discontinuity (infinity) at x = 0:

$$\int_{-1}^{+1} \frac{1}{x} dx \quad \gg \gg \quad \int_{-1}^{0} \frac{1}{x} dx + \int_{0}^{+1} \frac{1}{x} dx$$

(3) Improper integral definition:

$$>\!\!> > \lim_{R o 0^-} \int_{-1}^R rac{1}{x} \, dx + \lim_{R o 0^+} \int_{R}^{+1} rac{1}{x} \, dx$$

(3) Integrate:

$$\int_{-1}^{R} \frac{1}{x} dx \quad \gg \gg \quad \ln|R| - \ln|-1| \quad \gg \gg \quad \ln|R|$$

$$\int_R^{+1} \frac{1}{x} \, dx \quad \gg \gg \quad \ln|1| - \ln|R| \quad \gg \gg \quad -\ln R$$

(4) Take limits:

$$\lim_{R o 0^-} \ln |R| = -\infty, \qquad \lim_{R o 0^+} - \ln R = +\infty$$

Neither limit is finite. For $\int_{-1}^{+1} \frac{1}{x} dx$ to exist we'd need *both* of these limits to be finite. So: the original integral diverges.

05 Theory

Two tools allow us to determine convergence of a large variety of integrals. They are the **comparison test** and the p-integral cases.

B Comparison test - integrals

The comparison test says:

- When an improper integral converges, every *smaller* integral converges.
- When an improper integral diverges, every bigger integral diverges.

Here, smaller and bigger are comparisons of the *integrand* at all values (accounting properly for signs), and the bounds are assumed to be the same.

For example, $\int_2^\infty \frac{dx}{x^3}$ converges, and $x^4 > x^3$ implies $\frac{1}{x^4} < \frac{1}{x^3}$ (when x > 1), therefore the comparison test implies that $\int_2^\infty \frac{dx}{x^4}$ converges.

□ p-integral cases

Assume p > 0 and a > 0. We have:

$$p>1: \qquad \int_a^\infty rac{dx}{x^p} \quad ext{converges} \qquad ext{and} \quad \int_0^a rac{dx}{x^p} \quad ext{diverges}$$

$$p < 1:$$
 $\int_a^\infty rac{dx}{x^p}$ diverges and $\int_0^a rac{dx}{x^p}$ converges

$$p=1:$$
 $\int_a^\infty \frac{dx}{x}$ diverges and $\int_0^a \frac{dx}{x}$ diverges

Proving the *p*-integral cases

It is easy to prove the convergence / divergence of each p-integral case using the limit interpretation and the power rule for integrals. (Or for p=1, using $\int \frac{1}{x} dx = \ln x + C$.)

B Additional improper integral types

The improper integral $\int_{-\infty}^{a} f(x) dx$ also has a limit interpretation:

$$\int_{-\infty}^a f(x)\,dx \;=\; \lim_{R o -\infty} \int_R^a f(x)\,dx$$

The double improper integral $\int_{-\infty}^{\infty} f(x) dx$ has this limit interpretation:

$$\int_{-\infty}^{\infty} f(x)\,dx \ = \ \lim_{R o-\infty}\int_{R}^{a} f(x)\,dx + \lim_{R o\infty}\int_{a}^{R} f(x)\,dx$$

Where a is any finite number. This double integral does not exist if either limit does not exist for any value of a.

 $\int_{-\infty}^{\infty} \frac{1}{x} dx = \lim_{k \to \infty} \int_{-\infty}^{\infty} \frac{1}{x} dx + \lim_{k \to \infty} \int_{-\infty}^{\infty} \frac{1}{x} dx$

 $+\lim_{\alpha\to 0^+}\int_{a}^{\frac{1}{2}}dx+\lim_{\alpha\to 0^+}\int_{a}^{\frac{1}{2}}dx$

△ Double improper is not simultaneous!

Watch out! This may happen:

$$\int_{-\infty}^{\infty} f(x)\,dx \quad
eq \quad \lim_{R o\infty} \int_{-R}^{R} f(x)\,dx$$

This simultaneous limit might exist only because of internal cancellation in a case where the separate individual limits do not exist! We do *not* say 'convergent' in these cases!

06 Illustration

\equiv Example - Comparison to *p*-integrals

Determine whether the integral converges:

(a)
$$\int_2^\infty \frac{x^3}{x^4 - 1} \, dx$$

(b)
$$\int_{1}^{\infty} \frac{1}{x^2 + x + 1} dx$$

Solution

- (a)
- (1) Observe large x tendency:

Consider large values. Notice the integrand tends toward 1/x for large x.

$$rac{x^3}{x^4-1} \quad \longrightarrow \quad rac{x^3}{x^4} \quad ext{for} \quad x o\infty, \qquad ext{and} \quad rac{x^3}{x^4} = rac{1}{x}$$

(2) Try comparison to 1/x:

$$\frac{x^3}{x^4-1}\ \stackrel{?}{>}\ \frac{1}{x}$$

Validate. Notice $x^4 - 1 > 0$ and x > 0 when $x \ge 2$.

$$\frac{x^3}{x^4-1} > \frac{1}{x}$$

$$>\!\!> x^3 \cdot x \stackrel{?}{>} 1 \cdot (x^4 - 1) >\!\!> x^4 \stackrel{\checkmark}{>} x^4 - 1$$

(3) Apply comparison test:

We know:

$$\frac{x^3}{x^4-1} > \frac{1}{x}, \qquad \int_2^\infty \frac{1}{x} dx \qquad \text{diverges}$$

We conclude:

$$\int_{2}^{\infty} \frac{x^3}{x^4 - 1} \, dx \qquad \text{diverges}$$

(b)

(1) Observe large x tendency:

Consider large values. Notice the integrand tends toward $1/x^2$ for large x.

$$rac{1}{x^2+x+1} \quad \longrightarrow \quad rac{1}{x^2} \quad {
m for} \quad x o \infty$$

(2) Try comparison to $1/x^2$:

$$\frac{1}{x^2 + x + 1} \stackrel{?}{<} \frac{1}{x^2}$$

Validate. Notice $x^2 + x + 1 > 0$ and $x^2 > 0$ when $x \ge 1$.

$$\frac{1}{x^2 + x + 1} \stackrel{?}{<} \frac{1}{x^2}$$

$$\gg\gg 1\cdot x^2\stackrel{?}{<}1\cdot (x^2+x+1) \gg\gg x^2\stackrel{\checkmark}{<}x^2+x+1$$

(3) Apply comparison test:

We know:

$$\frac{1}{x^2+x+1}<\frac{1}{x^2},\qquad \int_1^\infty \frac{1}{x^2}\,dx\qquad \text{converges}$$

We conclude:

$$\int_1^\infty \frac{1}{x^2 + x + 1} \, dx \qquad \text{converges}$$