
Calculus II - Lecture notes - W07
Sequences

Videos

01 Theory

Videos, Math Dr. Bob:

Infinite sequences: Definition; Squeeze Theorem
​ Extra: Infinite sequences: Various examples, arithmetic and geometric

Extra: Infinite sequences: Recursive sequences (like Fibonacci)

A sequence is a rule that defines a term for each natural number n ∈ N:

a0, a1, a2, a3, a4, …

So a sequence is a function from N to R.

The defining relation of a geometric sequence is equivalent to an+1 = an ⋅ r.

By plugging a1 = a0 ⋅ r into a2 = a1 ⋅ r, we have a2 = (a0 ⋅ r) ⋅ r = a0 ⋅ r2. This plugging can be repeated n-
times to get a formula for the nth term:

an = an−1 ⋅ r = an−2 ⋅ r2 = an−3 ⋅ r3 = ⋯ = a1 ⋅ rn−1 = a0 ⋅ rn

Therefore an = a0 ⋅ rn, and we have a formula for the general term of the sequence (the term with index
n).

Geometric sequence

A sequence is called geometric if the ratio of consecutive terms is some constant r, independent of n:

an+1

an
= r for every n

Starting point of a sequence

Note that sometimes the index (variable) of a sequence starts somewhere other than 0. Most
common is 1 but any other starting point is allowed, even negative numbers.
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02 Illustration

Sometimes c is used instead of a0 in the formula for the general term of a sequence, thus an = cr
n.

The ‘c’ notation is useful when the sequence starts from n ≠ 0.

Extra - Fibonacci sequence

The Fibonacci sequence goes like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

The pattern is:

Fn = Fn−1 + Fn−2

This formula is a recursion relation, which means that terms are defined using the values of prior
terms.

The Fibonacci sequence is perhaps the most famous sequence of all time. It is related to the Golden
Ratio and the Golden Spiral:

Example: Geometric sequence - revealing the format

Find a0 and r and an (written in the geometric sequence format) for the following geometric
sequences:

(a) an = (−
1

2
)

n

 

(b) bn = −3( 2n+1

5n
) 

(c) cn = e
5+7n

Solution

(a)
Plug in n = 0 to obtain a0 = 1. Notice that an+1/an = −1/2 and so therefore r = −1/2. Then the
‘general term’ is an = a0 ⋅ rn = 1 ⋅ (−1/2)n.

(b)
Rewrite the fraction:

2n+1

5n
≫≫ 2 ⋅ ( 2

5
)

n

Plug that in and observe bn = −6 ⋅ (2/5)n. From this format we can read off b0 = −6 and r = 2/5.
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Series

Videos

03 Theory

04 Illustration

(c)
Rewrite:

cn ≫≫ e
5 ⋅ e7n ≫≫ e

5 ⋅ (e7)
n

From this format we can read off c0 = e5 and r = e7.

Videos, Math Dr. Bob:

Infinite series: Definitions, basic examples
Geometric series and SDT: Geometric series, Simple Divergence Test (aka “Limit Test”)
Infinite series: Various examples

​ Extra: Infinite series convergence: Telescoping series

A series is an infinite sum that is created by successive additions without end. The terms are not added
up “all at once” but rather they are added up “as n increases” or “as n → ∞.”

a0 + a1 + a2 + a3 + … =
∞

∑
n=0

an

Three of the most famous series are the Leibniz series and the geometric series:

Leibniz series: 1 −
1

3
+

1

5
−

1

7
+ ⋯ +

(−1)n

2n + 1
+ ⋯ =

π

4

Geometric series: 1 +
1

2
+

1

4
+

1

8
+ ⋯ + ( 1

2
)

n

+ ⋯ = 2

Partial sum sequence of a series

The partial sum sequence of a series is the sequence whose terms are the sums up to the given
index:

SN = a0 + a1 + ⋯ + aN =
N

∑
n=0

an

These SN  terms themselves form a sequence:

S0, S1, S2, S3, …

Example: Geometric series - total sum and partial sums
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Convergence

Videos

The geometric series total sum S can be calculated using a “shift technique” as follows:
(1) Compare S and rS:

(2) Subtract second line from first line, many cancellations:

(3) Solve to find S:

S =
a0

1 − r

The geometric series partial sums can be calculated similarly, as follows:

(1) Compare S and rS:

(2) Subtract second line from first line, many cancellations:

(3) Solve to find SN :

(4) The last formula is revealing in its own way. Here is what it means in terms of terms:

S = a0 + a0r + a0r
2 + a0r

3 + ⋯
×r

≫≫ rS = a0r + a0r
2 + a0r

3 + a0r
4 + ⋯

S = a0 + a0r + a0r
2 + a0r

3 + ⋯

−(rS = a0r + a0r
2 + a0r

3 + a0r
4 + ⋯)

——————————————————
S − rS = a0

Note: this calculation assumes that S exists, i.e. that the series converges.

SN = a0 + a0r + a0r
2 + ⋯ + a0r

N

×r

≫≫ rSN = a0r + a0r
2 + ⋯ + a0r

N + a0r
N+1

SN = a0 + a0r + a0r
2 + ⋯ + a0r

N

−(rSN = a0r + a0r
2 + ⋯ + a0r

N + a0r
N+1)

——————————————————

SN − rSN = a0 − a0r
N+1

SN = a0
1 − r

N+1

1 − r

=
a0

1 − r
−

a0

1 − r
r
N+1 = S − Sr

N+1

a0 + a0r + ⋯ + a0r
N =

a0 + a0r + a0r
2 + ⋯

− (a0r
N+1 + a0r

N+2 + ⋯)

Videos, Math Dr. Bob:

Infinite sequences convergence: Squeeze; Monotone Bounded
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05 Theory

Infinite sequences convergence: Examples sequences: convergent, monotonic, bounded

A sequence has a limit if its terms tend toward a specific number, or toward ±∞.

When this happens we can write “limn→∞ an = L” with some number L ∈ R or L = ±∞.
We can also write “an → L as n → ∞”.

The sequence is said to converge if it has a finite limit L ∈ R.

Some sequences don’t have a limit at all, like an = cosn:

Or an = e
n:

These sequences diverge.
In the second case, there is a limit L = ∞, so we say it diverges to +∞.

A sequence may have a limit of ±∞ but is still said to diverge.

Extra - Convergence definition

The precise meaning of convergence is this. We have an → L as n → ∞ if, given any proposed error
ε > 0, it is possible to find N  such that for all n > N  we have |an − L| < ε.

When L = ∞, convergence means that given any B > 0, we can find N  such that for all n > N  we
have an > B.
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06 Illustration

If the general term an is a continuous function of n, we can replace n with the continuous variable x and
compute the continuous limit instead:

lim
n→∞

an = lim
x→∞

ax

If ax would be a differentiable function, and we discover an indeterminate form, then we can apply
L’Hopital’s Rule to find the limit value. For example, if the indeterminate form is 0 ⋅ ∞, we can convert it
to ∞

1/0
= ∞

∞
 and apply L’Hopital.

Similarly for L = −∞.

Example - L’Hopital’s Rule for sequence limits

(a) What is the limit of an =
lnn

n
?

(b) What is the limit of bn =
(lnn)2

n
?

(c) What is the limit of cn = n(√n2 + 1 − √n)?

Solution
(a)
Identify indeterminate form ∞

∞
. Change from n to x and apply L’Hopital:

lim
x→∞

lnx

x

d

dx

≫≫ lim
x→∞

1/x

1
= 0

(b)
Identify indeterminate form ∞

∞ . Change from n to x and apply L’Hopital:

lim
x→∞

(lnx)2

x

d

dx

≫≫ lim
x→∞

2 lnx ⋅ 1
x

1
= 2 lim

x→∞

lnx

x

(by an result)
= 0

(c)
(1) Identify form ∞ ⋅ 0 and rewrite as ∞

∞ :

n(√n2 + 1 − √n) ≫≫
√n2 + 1 − √n

1/n

(2) Change from n to x and apply L’Hopital:

lim
x→∞

√x2 + 1 − √x

1/x
≫≫

1
2 (x

2 + 1)
−1/2

(2x) − 1
2 x

−1/2

−1/x2

(3) Simplify:

≫≫
−2x3

√x2 + 1
+ x

3/2 =
−2x3 + x

3/2√x2 + 1

√x2 + 1

(4) Consider the limit:
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−2x3 + x
3/2√x2 + 1

√x2 + 1

x→∞
⟶

−2x3 + x
3/2

x

x
⟶

−2x3

x
⟶ −∞

Example - Squeeze theorem

Use the squeeze theorem to show that 4n

n! → 0 as n → ∞.

Solution

(1) We will squeeze the given general term above 0 and below a sequence bn that we must devise:

0 ≤
4n

n!
≤ bn

(2) We need bn to satisfy bn → 0 and 4n

n! ≤ bn. Let us study 4n

n! .

4n

n!
=

4 ⋅ 4 ⋅ ⋯ ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4 ⋅ 4

n(n − 1) ⋯ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1

(3) Now for the trick. Collect factors in the middle bunch:

4n

n!
=

4

n
( 4

n − 1
⋅

4

n − 2
⋅ ⋯ ⋅

4

7
⋅

4

6
⋅

4

5
) 4 ⋅ 4 ⋅ 4 ⋅ 4

4 ⋅ 3 ⋅ 2 ⋅ 1

(4) Each factor in the middle bunch is < 1 so the entire middle bunch is < 1. Therefore:

4n

n!
<

4

n
⋅

44

4!
=

1024

24n

Now we can easily see that 1024/24n → 0 as n → ∞, so we set bn = 1024/24n and we are done.
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