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Convergence

01 Theory

g8 Monotone sequences
A sequence is called monotone increasing if a,1 > a, for every n.

A sequence is called monotone decreasing if a,+1 < a, for every n.

In this context, ‘monotone’ just means it preserves the increasing or decreasing modality for a// terms.

Monotonicity Theorem

If a sequence is monotone increasing, and bounded above by B, then it must converge to some limit
L,and L < B.

If a sequence is monotone decreasing, and bounded below by B, then it must converge to some
limit L, and L > B.

Terminology:

Bounded above by B means that a, < B for every n
Bounded below by B means that B < a,, for every n

/\ Notice!

The Monotonicity Theorem says that a limit L exists, but it does not provide the limit value.

02 Illustration

‘= Example - Monotonicity Theorem

Show that a, = v/n + 1 — /0 converges.

Solution

(1) Observe that a, > 0 for all n.

Because n+ 1 > n, we know vn + 1 > v/n. B :o
Therefore vn+1 — /n > 0 60,,(,1(JQC/ 6@(000 6j 7€ ro

(2) Change n to = and show a, is decreasing.

New formula: a; = vz + 1 — /z considered as a differentiable function.
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A\ Take derivative to show decreasing.

Derivative of a,:

4, 1 1
de °  oyz+1 2z

(3) Simplify:

2(\/E—V$+1)
4/zvE +1

Denominator is > 0. Numerator is < 0. So %az < 0 and a, is monotone decreasing.

>>

Therefore a, is monotone decreasing as n — oo.

Thee fre [,7 Mo Theorw @ |COnVEges

03 Theory

g8 Series convergence

We say that a series converges when its partial sum sequence converges:

00
« E a, converges”’ MEANS: “Sy converges as N — o0”

n=0

Let us apply this to the geometric series. Recall our formula for the partial sums:

1— ,,.N+1
SN =ag———
N 0 1—r
Rewrite this formula:
a a
>> Sy = 0 20 N
1—r 1—r
Now take the limit as N — oo:
. ao ao 1 ao
1 S — « _ oo+1 9 —
Nljgo N 1—7r 1—7r " 1—r

ao
1—r °

I\ So we see that Sy converges exactly when |r| < 1. It converges to

(If |r| = 1 then the denominator is 0, and if |r| > 1 then the factor r*+! does not converge.)

Furthermore, we have the limit value:

00

Zan = lim Sy= w__g
N—oo 1—r

n=0

This result confirms the formula we derived for the total S for a geometric series. This time we did not
start by assuming S exists, on the contrary we proved that S exists. (Provided that |r| < 1.)

Notice that we always have the rule:
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Sy =8§—riHlg

ag a
PN+

Sy =
N 1—7r 1—7r

This rule can be viewed as coming from partitioning the full series into a finite part Sy and the

remaining infinite part:

S =ag+agr+---+agr’ +agr¥ fagr¥2 4 ...

SN S-S~

We can remove a factor 7V *! from the infinite part:
S — Sy =Vt (a0+a07‘+a07'2 )

The parenthetical expression is equal to S, so we have the formula Sy = § — VN *18 given above.

Simple divergence test

Videos

Videos, Math Dr. Bob

Geometric series and SDT, again: Geometric series, Simple Divergence Test (aka “Limit Test”)

Integral test: Basics

Integral test: p-series

Extra: Integral test: Further examples

Extra: Integral test: Estimations

04 Theory
[\
Mot even

CLasa 1Les+ '

gF Simple Divergence Test (SDT)
Applicability: Any series.

Test Statement:

o0
lim a, # 0 = Z an, diverges
n—oo n—1
/\ The converse is not valid. For example, Z: 1 :7 diverges even though lim, % = 0.
05 IMlustration
‘= Example - Simple Divergence Test: examples
n __|_ as Nn- oo

n Or\ = L{//\*_l-
an +1 \‘-”"Z o
y~Oo

Consider: io:

n=1

This diverges by the SDT because a,, — % and not 0.
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Consider: z:(—l)"_1

n=1

n
n+1

This diverges by the SDT because lim,,_, a, = DNE.
We can say the terms “converge to the pattern +1, —1, +1, —1, ...,” but that is not a limit

value.

Positive series

Videos

Direct Comparison Test: Theory and basic examples

Direct Comparison Test: Series ﬁ

Limit Comparison Test: Theory and basic examples

Limit Comparison Test: Further examples

06 Theory

A series is called positive when its individual terms are positive, i.e. a,, > 0 for all n.

The partial sum sequence Sy is monotone increasing for a positive series.

By the monotonicity test for convergence of sequences, Sy therefore converges whenever it is bounded

above. If Sy is not bounded above, then Y > | a, diverges to +oo.

Another test, called the integral test, studies the terms of a series as if they represent rectangles with

upper corner pinned to the graph of a continuous function.

To apply the test, we must convert the integer index variable n in a, into a continuous variable z. This is
easy when we have a formula for a,, (provided it doesn’t contain factorials or other elements dependent on

integrality).

Applicability: get Pl~) = ay

@) f(z) >0
C (i) f(x) is continuous

(i) f(z) is monotone decreasing

Test Statement:

Z a, Conmsree — / f(z) da Coamsree
= diverges 1 diverges
Converyes (Arveses) onweses  (clrases)

417
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To show that integral convergence implies series convergence, consider the diagram:

This shows that 32 , a, < le f(z) dz for any N. Therefore, if [;° f(z) dz converges, then le f(z)dz
is bounded (independent of N) and so ZHN:2 a, is bounded by that inequality. But Ensz a, =Sy —ay;
so by adding a1 to the bound, we see that Sy itself is bounded, which implies that > °; a,, converges.

To show that integral divergence implies series divergence, consider a similar diagram:

y

This shows that > 'a, > le f(z) dz for any N. Therefore, if [° f(z) dz diverges, then le f(z)dz
goes to +oo as N — oo, and so .1 a,, goes to +00 as well. So 3%, a,, diverges.
/ Notice: the picture shows f(z) entirely above (or below) the rectangles.

This depends upon f(z) being monotone decreasing, as well as f(z) > 0.
This explains the applicability conditions.

Next we use the integral test to evaluate the family of p-series, and later we can use p-series in
comparison tests without repeating the work of the integral test.

o0
B . . 1
A p-series is a series of this form: —
n=1 @
Convergence properties:
p > 1 : series converges p < 1: series diverges

(1) To verify the convergence properties of p-series, apply the integral test:
Applicability: verify it’s continuous, positive, decreasing.
Convert n to z to obtain the function f(z) = =-.

xP

Indeed zl—p is continuous and positive and decreasing as x increases.
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(2) Apply the integral test.

Integrate, assuming p # 1:

R

* 1 zP1
/ —dz >> lim
1 xP R—o0 P — 1

1

pr+1 17p+1
>> lim =
R—o0 -p+1 —-p+1
When p > 1 we have limp_, ’f;—’:i =0

. R P
When p < 1 we have limp oo <577 =00

When p = 1, integrate a second time:

— 00

o 1 R
/ —dx >> lim Inz
1 T R 1

>> lim mR—Inl >> o~
R—00

(3) Conclude: the integral converges when p > 1 and diverges when p < 1.

Z Supplement: we could instead immediately refer to the convergence results for p-
integrals instead of reproving them here.

07 Illustration
:= Example - p-series examples
By finding p and applying the p-series convergence properties:

We see that Y3°° | i+ converges: p=1.1s0p > 1

But 377, % diverges: p=1/2sop < 1

:= Example - Integral test - pushing the envelope of convergence

1
Does Z converge?
o n Inn

1
Does Z W converge?

Notice that Inn grows very slowly with n, so W}m is just a /ittle smaller than % for large n, and

similarly Hl—inv is just a little smaller still.

Solution
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(1) The two series lead to the two functions f(z) = == and g(z) =

1
zlnz z(lnz)? *

Check applicability.

Clearly f(z) and g(z) are both continuous, positive, decreasing functions on z € [2, 00).

(2) Apply the integral test to f(z).

* 1 © 1
/ de >> / —du
2 Z Inz u=ln2 U

R
>> limlnu‘11 > 00
n

R—00

Integrate f(z):

0 00 1 OroeS
Conclude: Y >, —— diverges.

(3) Apply the integral test to g(z).

Integrate g(z):

* 1 * 1
2 'T(ln .’E) u=ln2 U

) LR 1
>>  lim —u ] > —
R—00 In2 In2

Conclude: Y7, m converges.
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