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01 Theory

02 Illustration

In this context, ‘monotone’ just means it preserves the increasing or decreasing modality for all terms.

Terminology:

Monotone sequences

A sequence is called monotone increasing if  for every .

A sequence is called monotone decreasing if  for every .

Monotonicity Theorem

If a sequence is monotone increasing, and bounded above by , then it must converge to some limit
, and .

If a sequence is monotone decreasing, and bounded below by , then it must converge to some
limit , and .

Bounded above by  means that  for every 
Bounded below by  means that  for every 

Notice!

The Monotonicity Theorem says that a limit  exists, but it does not provide the limit value.

Example - Monotonicity Theorem

Show that  converges.

Solution

(1) Observe that  for all .

Because , we know .

Therefore 

(2) Change  to  and show  is decreasing.

New formula:  considered as a differentiable function.
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03 Theory

Derivative of :

(3) Simplify:

Denominator is . Numerator is . So  and  is monotone decreasing.

Therefore  is monotone decreasing as .

Take derivative to show decreasing.

Let us apply this to the geometric series. Recall our formula for the partial sums:

Rewrite this formula:

Now take the limit as :

(If  then the denominator is , and if  then the factor  does not converge.)

Furthermore, we have the limit value:

This result confirms the formula we derived for the total  for a geometric series. This time we did not
start by assuming  exists, on the contrary we proved that  exists. (Provided that .)

Series convergence

We say that a series converges when its partial sum sequence converges:

So we see that  converges exactly when . It converges to .

Extra - Aspects of  and  from the geometric series

Notice that we always have the rule:
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Simple divergence test
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This rule can be viewed as coming from partitioning the full series into a finite part  and the
remaining infinite part:

We can remove a factor  from the infinite part:

The parenthetical expression is equal to , so we have the formula  given above.

Videos, Math Dr. Bob

Geometric series and SDT, again: Geometric series, Simple Divergence Test (aka “Limit Test”)
Integral test: Basics
Integral test: -series

 Extra: Integral test: Further examples
Extra: Integral test: Estimations

Simple Divergence Test (SDT)

Applicability: Any series.

Test Statement:

The converse is not valid. For example,  diverges even though .

Example - Simple Divergence Test: examples

Consider: 

This diverges by the SDT because  and not .
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Positive series
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06 Theory

Consider: 

This diverges by the SDT because .
We can say the terms “converge to the pattern ,” but that is not a limit
value.

Direct Comparison Test: Theory and basic examples
Direct Comparison Test: Series 
Limit Comparison Test: Theory and basic examples
Limit Comparison Test: Further examples

The partial sum sequence  is monotone increasing for a positive series.

By the monotonicity test for convergence of sequences,  therefore converges whenever it is bounded
above. If  is not bounded above, then  diverges to .

Another test, called the integral test, studies the terms of a series as if they represent rectangles with
upper corner pinned to the graph of a continuous function.

To apply the test, we must convert the integer index variable  in  into a continuous variable . This is
easy when we have a formula for  (provided it doesn’t contain factorials or other elements dependent on
integrality).

Positive series

A series is called positive when its individual terms are positive, i.e.  for all .

Integral Test (IT)

Applicability:

Test Statement:

(i) 
(ii)  is continuous
(iii)  is monotone decreasing

Extra - Integral test: explanation
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Next we use the integral test to evaluate the family of -series, and later we can use -series in
comparison tests without repeating the work of the integral test.

To show that integral convergence implies series convergence, consider the diagram:

This shows that  for any . Therefore, if  converges, then 
is bounded (independent of ) and so  is bounded by that inequality. But ;
so by adding  to the bound, we see that  itself is bounded, which implies that  converges.

To show that integral divergence implies series divergence, consider a similar diagram:

This shows that  for any . Therefore, if  diverges, then 
goes to  as , and so  goes to  as well. So  diverges.

Notice: the picture shows  entirely above (or below) the rectangles.

This depends upon  being monotone decreasing, as well as .
This explains the applicability conditions.

-series

A -series is a series of this form: 

Convergence properties:

Extra - Proof of -series convergence

(1) To verify the convergence properties of -series, apply the integral test:

Applicability: verify it’s continuous, positive, decreasing.

Convert  to  to obtain the function .

Indeed  is continuous and positive and decreasing as  increases.
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07 Illustration

(2) Apply the integral test.

Integrate, assuming :

When  we have 

When  we have 

When , integrate a second time:

(3) Conclude: the integral converges when  and diverges when .

Supplement: we could instead immediately refer to the convergence results for -
integrals instead of reproving them here.

Example - -series examples

By finding  and applying the -series convergence properties:

We see that  converges:  so 

But  diverges:  so 

Example - Integral test - pushing the envelope of convergence

Does  converge?

Does  converge?

Notice that  grows very slowly with , so  is just a little smaller than  for large , and
similarly  is just a little smaller still.

Solution
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(1) The two series lead to the two functions  and .

Check applicability.

Clearly  and  are both continuous, positive, decreasing functions on .

(2) Apply the integral test to .

Integrate :

Conclude:  diverges.

(3) Apply the integral test to .

Integrate :

Conclude:  converges.
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