Calculus II - Lecture notes - W08

Convergence

01 Theory

⊞ Monotone sequences

A sequence is called **monotone increasing** if $a_{n+1} \ge a_n$ for every n.

A sequence is called **monotone decreasing** if $a_{n+1} \leq a_n$ for every n.

In this context, 'monotone' just means it preserves the increasing or decreasing modality for *all* terms.

Monotonicity Theorem

If a sequence is monotone increasing, and bounded above by B, then it must converge to some limit L, and $L \leq B$.

If a sequence is monotone decreasing, and bounded below by B, then it must converge to some limit L, and $L \geq B$.

Terminology:

- Bounded above by B means that $a_n \leq B$ for every n
- Bounded below by B means that $B \leq a_n$ for every n

△ Notice!

The Monotonicity Theorem says that a limit *L exists*, but it does not *provide* the limit value.

02 Illustration

≡ Example - Monotonicity Theorem

Show that $a_n = \sqrt{n+1} - \sqrt{n}$ converges.

Solution

(1) Observe that $a_n > 0$ for all n.

Because n+1>n, we know $\sqrt{n+1}>\sqrt{n}$.

Therefore $\sqrt{n+1}-\sqrt{n}>0$ bounded below by <u>zero</u>

(2) Change n to x and show a_x is decreasing.

New formula: $a_x = \sqrt{x+1} - \sqrt{x}$ considered as a *differentiable* function.

Derivative of a_x :

$$rac{d}{dx}a_x = rac{1}{2\sqrt{x+1}} - rac{1}{2\sqrt{x}}$$

(3) Simplify:

$$\gg\gg \qquad rac{2\left(\sqrt{x}-\sqrt{x+1}
ight)}{4\sqrt{x}\sqrt{x+1}}$$

Denominator is > 0. Numerator is < 0. So $\frac{d}{dx}a_x < 0$ and a_x is monotone decreasing.

Therefore a_n is monotone decreasing as $n \to \infty$.

Therefore by the Theorem: conveyes.

03 Theory

B Series convergence

We say that a series converges when its partial sum sequence converges:

$$\hbox{``}\sum_{n=0}^\infty a_n \quad \hbox{converges''} \qquad \hbox{MEANS:} \qquad \hbox{``}S_N \quad \hbox{converges as } N o \infty \hbox{''}$$

Let us apply this to the geometric series. Recall our formula for the partial sums:

$$S_N=a_0rac{1-r^{N+1}}{1-r}$$

Rewrite this formula:

$$\gg \gg S_N = rac{a_0}{1-r} - rac{a_0}{1-r} r^{N+1}$$

Now take the limit as $N \to \infty$:

$$\lim_{N \to \infty} S_N = \frac{a_0}{1-r} - \frac{a_0}{1-r} r^{\infty+1}, = \frac{a_0}{1-r}$$

riangle So we see that S_N converges exactly when |r|<1. It converges to $rac{a_0}{1-r}.$

(If |r|=1 then the denominator is 0, and if |r|>1 then the factor $r^{\infty+1}$ does not converge.)

Furthermore, we have the limit value:

$$\sum_{n=0}^{\infty} a_n \quad = \quad \lim_{N o\infty} S_N = rac{a_0}{1-r} = S$$

This result confirms the formula we derived for the total S for a geometric series. This time we did not start by assuming S exists, on the contrary we proved that S exists. (Provided that |r| < 1.)

 \blacksquare Extra - Aspects of S and S_N from the geometric series

Notice that we always have the rule:

$$S_N = S - r^{N+1}S$$

$$S_N = rac{a_0}{1-r} - rac{a_0}{1-r} r^{N+1}$$

This rule can be viewed as coming from partitioning the full series into a finite part S_N and the remaining infinite part:

$$S = \underbrace{a_0 + a_0 r + \dots + a_0 r^N}_{S_N} + \underbrace{a_0 r^{N+1} + a_0 r^{N+2} + \dots}_{S-S_N}$$

We can remove a factor r^{N+1} from the infinite part:

$$S - S_N = r^{N+1} \left(a_0 + a_0 r + a_0 r^2 \; \dots \;
ight)$$

The parenthetical expression is equal to S, so we have the formula $S_N = S - r^{N+1}S$ given above.

Simple divergence test

Videos

Videos, Math Dr. Bob

• Geometric series and SDT, again: Geometric series, Simple Divergence Test (aka "Limit Test")

• Integral test: Basics

• <u>Integral test</u>: *p*-series

• Extra: Integral test: Further examples

• Extra: Integral test: Estimations

04 Theory

B Simple Divergence Test (SDT)

Test Statement:

Applicability: Any series.

"Not even close test"

 $\lim_{n\to\infty} a_n \neq 0$ \Longrightarrow $\sum_{n=1}^{\infty} a_n$ diverges

 \triangle The converse is not valid. For example, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges even though $\lim_{n\to\infty} \frac{1}{n} = 0$.

05 Illustration

≡ Example - Simple Divergence Test: examples

Consider:
$$\sum_{n=1}^{\infty} \frac{n}{4n+1}$$

$$Q_n = \frac{n}{4n+1} \xrightarrow{\text{lifter}} \frac{1}{4n+2} \qquad \text{as } n \to \infty$$

• This diverges by the SDT because $a_n \to \frac{1}{4}$ and not 0.

Consider:
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n+1}$$

- This diverges by the SDT because $\lim_{n\to\infty} a_n = \text{DNE}$.
- We can say the terms "converge to the pattern $+1, -1, +1, -1, \ldots$," but that is not a limit value.

Positive series

Videos

- <u>Direct Comparison Test</u>: Theory and basic examples
- <u>Direct Comparison Test</u>: Series $\frac{1}{\ln n}$
- <u>Limit Comparison Test</u>: Theory and basic examples
- <u>Limit Comparison Test</u>: Further examples

06 Theory

₽ Positive series

A series is called **positive** when its individual terms are positive, i.e. $a_n > 0$ for all n.

The partial sum sequence S_N is *monotone increasing* for a positive series.

By the monotonicity test for convergence of sequences, S_N therefore converges whenever it is bounded *above.* If S_N is not bounded above, then $\sum_{n=1}^{\infty} a_n$ diverges to $+\infty$.

Another test, called the integral test, studies the terms of a series as if they represent rectangles with upper corner pinned to the graph of a continuous function.

To apply the test, we must convert the integer index variable n in a_n into a continuous variable x. This is easy when we have a formula for a_n (provided it doesn't contain factorials or other elements dependent on integrality).

Applicability: Set
$$f(x) = a_x$$

 $\label{eq:force_force} \begin{picture}(10,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}}$

• (iii) f(x) is monotone decreasing

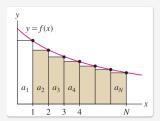
Test Statement:

$$\sum_{n=1}^{\infty} a_n \quad \frac{\text{converges}}{\text{diverges}} \quad \iff \quad \int_1^{\infty} f(x) \, dx \quad \frac{\text{converges}}{\text{diverges}}$$

$$\text{Converges} \quad \left(\text{diverges}\right) \quad \text{converges} \quad \left(\text{diverges}\right)$$

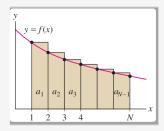
Extra - Integral test: explanation

To show that *integral convergence implies series convergence*, consider the diagram:



This shows that $\sum_{n=2}^N a_n \le \int_1^N f(x) \, dx$ for any N. Therefore, if $\int_1^\infty f(x) \, dx$ converges, then $\int_1^N f(x) \, dx$ is bounded (independent of N) and so $\sum_{n=2}^N a_n$ is bounded by that inequality. But $\sum_{n=2}^N a_n = S_N - a_1$; so by adding a_1 to the bound, we see that S_N itself is bounded, which implies that $\sum_{n=1}^\infty a_n$ converges.

To show that integral divergence implies series divergence, consider a similar diagram:



This shows that $\sum_{n=1}^{N-1} a_n \ge \int_1^N f(x) \, dx$ for any N. Therefore, if $\int_1^\infty f(x) \, dx$ diverges, then $\int_1^N f(x) \, dx$ goes to $+\infty$ as $N \to \infty$, and so $\sum_{n=1}^{N-1} a_n$ goes to $+\infty$ as well. So $\sum_{n=1}^\infty a_n$ diverges.

 \mathcal{O} Notice: the picture shows f(x) entirely above (or below) the rectangles.

This depends upon f(x) being *monotone decreasing*, as well as f(x) > 0. This explains the applicability conditions.

Next we use the integral test to evaluate the family of p-series, and later we can use p-series in comparison tests without repeating the work of the integral test.

⊕ p-series

A *p*-series is a series of this form: $\sum_{n=1}^{\infty} \frac{1}{n^p}$

Convergence properties:

p > 1: series converges

 $p \leq 1$: series diverges

Extra - Proof of p-series convergence

(1) To verify the convergence properties of *p*-series, apply the integral test:

Applicability: verify it's continuous, positive, decreasing.

Convert *n* to *x* to obtain the function $f(x) = \frac{1}{x^p}$.

Indeed $\frac{1}{x^p}$ is continuous and positive and decreasing as x increases.

(2) Apply the integral test.

Integrate, assuming $p \neq 1$:

$$\int_1^\infty rac{1}{x^p} \ dx \quad \gg \gg \quad \lim_{R o\infty} \left.rac{x^{p-1}}{p-1}
ight|_1^R$$
 $\gg \gg \quad \lim_{R o\infty} \left.\left(rac{R^{-p+1}}{-p+1} - rac{1^{-p+1}}{-p+1}
ight)$

When p>1 we have $\lim_{R o\infty} \, rac{R^{-p+1}}{-p+1}=0$

When p < 1 we have $\lim_{R o \infty} \ rac{R^{-p+1}}{-p+1} = \infty$

When p = 1, integrate a second time:

$$\begin{split} \int_{1}^{\infty} \frac{1}{x} \, dx & \gg \gg & \lim_{R \to \infty} \, \ln x \Big|_{1}^{R} \\ & \gg \gg & \lim_{R \to \infty} \, \ln R - \ln 1 & \gg \gg & \infty \end{split}$$

(3) Conclude: the integral converges when p > 1 and diverges when $p \le 1$.

Supplement: we could instead immediately refer to the convergence results for p-integrals instead of reproving them here.

07 Illustration

\equiv Example - *p*-series examples

By finding p and applying the p-series convergence properties:

We see that $\sum_{n=1}^{\infty} \frac{1}{n^{1.1}}$ converges: p=1.1 so p>1

But $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges: p = 1/2 so $p \leq 1$

:≡ Example - Integral test - pushing the envelope of convergence

Does
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 converge?

Does
$$\sum_{n=0}^{\infty} \frac{1}{n(\ln n)^2}$$
 converge?

Notice that $\ln n$ grows $very \ slowly$ with n, so $\frac{1}{n \ln n}$ is just a *little* smaller than $\frac{1}{n}$ for large n, and similarly $\frac{1}{n(\ln n)^2}$ is just a little smaller still.

Solution

(1) The two series lead to the two functions $f(x) = \frac{1}{x \ln x}$ and $g(x) = \frac{1}{x(\ln x)^2}$.

Check applicability.

Clearly f(x) and g(x) are both continuous, positive, decreasing functions on $x \in [2, \infty)$.

(2) Apply the integral test to f(x).

Integrate f(x):

$$\int_2^\infty rac{1}{x \ln x} \ dx \quad \gg \gg \quad \int_{u=\ln 2}^\infty rac{1}{u} \ du$$
 $\gg \gg \quad \lim_{R o\infty} \ln u igg|_{\ln 1}^R \quad \gg \gg \quad \infty$

Conclude: $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges.

(3) Apply the integral test to g(x).

Integrate g(x):

$$\int_2^\infty \frac{1}{x(\ln x)^2} \, dx \quad \gg \gg \quad \int_{u=\ln 2}^\infty \frac{1}{u^2} \, du$$

$$\gg \gg \quad \lim_{R \to \infty} -u^{-1} \Big|_{\ln 2}^R \quad \gg \gg \quad \frac{1}{\ln 2}$$

Conclude: $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converges.