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In this context, ‘monotone’ just means it preserves the increasing or decreasing modality for all terms.

Terminology:

Monotone sequences

A sequence is called monotone increasing if an+1 ≥ an for every n.

A sequence is called monotone decreasing if an+1 ≤ an for every n.

Monotonicity Theorem

If a sequence is monotone increasing, and bounded above by B, then it must converge to some limit
L, and L ≤ B.

If a sequence is monotone decreasing, and bounded below by B, then it must converge to some
limit L, and L ≥ B.

Bounded above by B means that an ≤ B for every n
Bounded below by B means that B ≤ an for every n

Notice!

The Monotonicity Theorem says that a limit L exists, but it does not provide the limit value.

Example - Monotonicity Theorem

Show that an = √n + 1 − √n converges.

Solution

(1) Observe that an > 0 for all n.

Because n + 1 > n, we know √n + 1 > √n.

Therefore √n + 1 − √n > 0

(2) Change n to x and show ax is decreasing.

New formula: ax = √x + 1 − √x considered as a differentiable function.
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03 Theory

Derivative of ax:

d

dx
ax =

1

2√x + 1
−

1

2√x

(3) Simplify:

≫≫
2(√x − √x + 1)

4√x√x + 1

Denominator is > 0. Numerator is < 0. So d
dx ax < 0 and ax is monotone decreasing.

Therefore an is monotone decreasing as n → ∞.

Take derivative to show decreasing.

Let us apply this to the geometric series. Recall our formula for the partial sums:

SN = a0
1 − rN+1

1 − r

Rewrite this formula:

≫≫ SN =
a0

1 − r
−

a0

1 − r
rN+1

Now take the limit as N → ∞:

lim
N→∞

SN = “
a0

1 − r
−

a0

1 − r
r∞+1 ” =

a0

1 − r

(If |r| = 1 then the denominator is 0, and if |r| > 1 then the factor r∞+1 does not converge.)

Furthermore, we have the limit value:

∞

∑
n=0

an = lim
N→∞

SN =
a0

1 − r
= S

This result confirms the formula we derived for the total S for a geometric series. This time we did not
start by assuming S exists, on the contrary we proved that S exists. (Provided that |r| < 1.)

Series convergence

We say that a series converges when its partial sum sequence converges:

“
∞

∑
n=0

an converges” MEANS: “SN converges as N → ∞”

So we see that SN  converges exactly when |r| < 1. It converges to a0

1−r
.

Extra - Aspects of S and SN  from the geometric series

Notice that we always have the rule:
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This rule can be viewed as coming from partitioning the full series into a finite part SN  and the
remaining infinite part:

We can remove a factor rN+1 from the infinite part:

S − SN = rN+1 (a0 + a0r + a0r
2 … )

The parenthetical expression is equal to S, so we have the formula SN = S − rN+1S given above.

SN = S − rN+1S

SN =
a0

1 − r
−

a0

1 − r
rN+1

S = a0 + a0r + ⋯ + a0r
N

SN

+ a0r
N+1 + a0r

N+2 + …

S−SN

 

Videos, Math Dr. Bob

Geometric series and SDT, again: Geometric series, Simple Divergence Test (aka “Limit Test”)
Integral test: Basics
Integral test: p-series

​ Extra: Integral test: Further examples
Extra: Integral test: Estimations

Simple Divergence Test (SDT)

Applicability: Any series.

Test Statement:

lim
n→∞

an ≠ 0 ⟹

∞

∑
n=1

an diverges

The converse is not valid. For example, ∑∞
n=1

1
n

 diverges even though limn→∞
1
n

= 0.

Example - Simple Divergence Test: examples

Consider: 
∞

∑
n=1

n

4n + 1

This diverges by the SDT because an → 1
4

 and not 0.
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Positive series

Videos

06 Theory

Consider: 
∞

∑
n=1

(−1)n−1 n

n + 1

This diverges by the SDT because limn→∞ an = DNE.
We can say the terms “converge to the pattern +1, −1, +1, −1, … ,” but that is not a limit
value.

Direct Comparison Test: Theory and basic examples
Direct Comparison Test: Series 1

lnn

Limit Comparison Test: Theory and basic examples
Limit Comparison Test: Further examples

The partial sum sequence SN  is monotone increasing for a positive series.

By the monotonicity test for convergence of sequences, SN  therefore converges whenever it is bounded
above. If SN  is not bounded above, then ∑∞

n=1 an diverges to +∞.

Another test, called the integral test, studies the terms of a series as if they represent rectangles with
upper corner pinned to the graph of a continuous function.

To apply the test, we must convert the integer index variable n in an into a continuous variable x. This is
easy when we have a formula for an (provided it doesn’t contain factorials or other elements dependent on
integrality).

Positive series

A series is called positive when its individual terms are positive, i.e. an > 0 for all n.

Integral Test (IT)

Applicability:

Test Statement:
∞

∑
n=1

an
converges
diverges

⟺ ∫
∞

1

f(x) dx
converges
diverges

(i) f(x) > 0

(ii) f(x) is continuous
(iii) f(x) is monotone decreasing

Extra - Integral test: explanation
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Next we use the integral test to evaluate the family of p-series, and later we can use p-series in
comparison tests without repeating the work of the integral test.

To show that integral convergence implies series convergence, consider the diagram:

This shows that ∑N
n=2 an ≤ ∫ N

1 f(x) dx for any N . Therefore, if ∫ ∞
1 f(x) dx converges, then ∫ N

1 f(x) dx

is bounded (independent of N) and so ∑N
n=2 an is bounded by that inequality. But ∑N

n=2 an = SN − a1;
so by adding a1 to the bound, we see that SN  itself is bounded, which implies that ∑∞

n=1 an converges.

To show that integral divergence implies series divergence, consider a similar diagram:

This shows that ∑N−1
n=1 an ≥ ∫ N

1
f(x) dx for any N . Therefore, if ∫ ∞

1
f(x) dx diverges, then ∫ N

1
f(x) dx

goes to +∞ as N → ∞, and so ∑N−1
n=1 an goes to +∞ as well. So ∑∞

n=1 an diverges.

Notice: the picture shows f(x) entirely above (or below) the rectangles.

This depends upon f(x) being monotone decreasing, as well as f(x) > 0.
This explains the applicability conditions.

p-series

A p-series is a series of this form: 
∞

∑
n=1

1

np

Convergence properties:

p > 1 : series converges p ≤ 1 : series diverges

Extra - Proof of p-series convergence

(1) To verify the convergence properties of p-series, apply the integral test:

Applicability: verify it’s continuous, positive, decreasing.

Convert n to x to obtain the function f(x) = 1
xp .

Indeed 1
xp  is continuous and positive and decreasing as x increases.
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07 Illustration

(2) Apply the integral test.

Integrate, assuming p ≠ 1:

When p > 1 we have limR→∞
R−p+1

−p+1 = 0

When p < 1 we have limR→∞
R−p+1

−p+1 = ∞

When p = 1, integrate a second time:

(3) Conclude: the integral converges when p > 1 and diverges when p ≤ 1.

∫
∞

1

1
xp

dx ≫≫ lim
R→∞

xp−1

p − 1

R

1

≫≫ lim
R→∞

( R−p+1

−p + 1
−

1−p+1

−p + 1
)∣∫

∞

1

1

x
dx ≫≫ lim

R→∞
lnx

R

1

≫≫ lim
R→∞

lnR − ln 1 ≫≫ ∞∣Supplement: we could instead immediately refer to the convergence results for p-
integrals instead of reproving them here.

Example - p-series examples

By finding p and applying the p-series convergence properties:

We see that ∑∞
n=1

1
n1.1  converges: p = 1.1 so p > 1

But ∑∞
n=1

1
√n

 diverges: p = 1/2 so p ≤ 1

Example - Integral test - pushing the envelope of convergence

Does 
∞

∑
n=2

1

n lnn
 converge?

Does 
∞

∑
n=2

1

n(lnn)2
 converge?

Notice that lnn grows very slowly with n, so 1
n lnn  is just a little smaller than 1

n  for large n, and
similarly 1

n(lnn)2  is just a little smaller still.

Solution
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(1) The two series lead to the two functions f(x) = 1
x lnx  and g(x) = 1

x(lnx)2 .

Check applicability.

Clearly f(x) and g(x) are both continuous, positive, decreasing functions on x ∈ [2, ∞).

(2) Apply the integral test to f(x).

Integrate f(x):

Conclude: ∑∞
n=2

1
n lnn

 diverges.

(3) Apply the integral test to g(x).

Integrate g(x):

Conclude: ∑∞
n=2

1
n(lnn)2  converges.

∫
∞

2

1

x lnx
dx ≫≫ ∫

∞

u=ln 2

1

u
du

≫≫ lim
R→∞

lnu
R

ln 1
≫≫ ∞∣∫

∞

2

1

x(lnx)2
dx ≫≫ ∫

∞

u=ln 2

1

u2
du

≫≫ lim
R→∞

−u−1
R

ln 2
≫≫

1
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