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Convergence

01 Theory

g8 Monotone sequences
A sequence is called monotone increasing if a,1 > a, for every n.

A sequence is called monotone decreasing if a,+1 < a, for every n.

In this context, ‘monotone’ just means it preserves the increasing or decreasing modality for a// terms.

Monotonicity Theorem

If a sequence is monotone increasing, and bounded above by B, then it must converge to some limit
L,and L < B.

If a sequence is monotone decreasing, and bounded below by B, then it must converge to some
limit L, and L > B.

Terminology:

Bounded above by B means that a, < B for every n

Bounded below by B means that B < a,, for every n

I\ Notice!

The Monotonicity Theorem says that a limit L exists, but it does not provide the limit value.

02 Illustration

‘= Example - Monotonicity Theorem

Show that a, = v/n + 1 — /0 converges.
Solution

(1) Observe that a, > 0 for all n.

Because n+ 1 > n, we know vn+ 1 > /n.

Therefore vn+1—+/n >0

(2) Change n to = and show a, is decreasing.

New formula: a; = vz + 1 — /z considered as a differentiable function.
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A\ Take derivative to show decreasing.

Derivative of a,:

4, 1 1
de °  oyz+1 2z

(3) Simplify:

2(\/5—\/m+1)
4/zvE +1

Denominator is > 0. Numerator is < 0. So %az < 0 and a, is monotone decreasing.

>>

Therefore a, is monotone decreasing as n — oo.

03 Theory

We say that a series converges when its partial sum sequence converges:

[eo]
« E a, converges”’ MEANS: “Sy converges as N — o0”
n=0

Let us apply this to the geometric series. Recall our formula for the partial sums:

1— TN+1
SN =ag————
N 0 1—r
Rewrite this formula:
a a
>> Sy = 0 20 N
1—r 1—r
Now take the limit as N — oo:
. ao ao 1 ag
1 S — « _ oo+1 9 —
Nljgo N 1—7r 1—7r " 1—r

ao

1-7°

I\ So we see that Sy converges exactly when |r| < 1. It converges to

(If |r| = 1 then the denominator is 0, and if |r| > 1 then the factor r*+! does not converge.)

Furthermore, we have the limit value:

> . ag

E a, = lim Sy= =8
N—oo 1—r

n=0

This result confirms the formula we derived for the total S for a geometric series. This time we did not
start by assuming S exists, on the contrary we proved that S exists. (Provided that |r| < 1.)

Notice that we always have the rule:
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Sy =5—rVtg

ag ao
TN+1

SN:lfr 1—r

This rule can be viewed as coming from partitioning the full series into a finite part Sy and the

remaining infinite part:

S=ag+agr+---+agr’ +agrV* +agrVt2 L.

Sy S—Sn

We can remove a factor ¥ +! from the infinite part:
S — Sy =rtt (a0+a0r+a0r2 o)

The parenthetical expression is equal to S, so we have the formula Sy = S — r¥*18 given above.

Simple divergence test

Videos

Videos, Math Dr. Bob

Geometric series and SDT, again: Geometric series, Simple Divergence Test (aka “Limit Test”)

Integral test: Basics

[ntegral test: p-series
Extra: Integral test: Further examples

Extra: Integral test: Estimations

04 Theory

g% Simple Divergence Test (SDT)
Applicability: Any series.

Test Statement:

00

lim a, #0 e Z an, diverges
n—0o00 =i

00 1

1 - diverges even though lim, . % 0.

/\ The converse is not valid. For example, >

05 Illustration
‘= Example - Simple Divergence Test: examples

Consider: i

n=1

n
n+1

This diverges by the SDT because a,, — % and not 0.
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Consider: Z(—l)”’1

n=1

"
n+1

This diverges by the SDT because lim,,_,» a, = DNE.
We can say the terms “converge to the pattern +1, —1, +1, —1, ...,” but that is not a limit

value.

Positive series

Direct Comparison Test: Theory and basic examples

Direct Comparison Test: Series ﬁ

Limit Comparison Test: Theory and basic examples

Limit Comparison Test: Further examples

A series is called positive when its individual terms are positive, i.e. a,, > 0 for all n.

The partial sum sequence Sy is monotone increasing for a positive series.

By the monotonicity test for convergence of sequences, Sy therefore converges whenever it is bounded

above. If Sy is not bounded above, then Y > | a, diverges to +oo.

Another test, called the integral test, studies the terms of a series as if they represent rectangles with

upper corner pinned to the graph of a continuous function.

To apply the test, we must convert the integer index variable n in a, into a continuous variable z. This is
easy when we have a formula for a,, (provided it doesn’t contain factorials or other elements dependent on

integrality).

Applicability:

@ f(z) >0
(i1) f(z) is continuous

(1i1) f(z) is monotone decreasing
Test Statement:

o0 o0

converges converges
S, Gwmmm oy D
= diverges 1 diverges

417
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To show that integral convergence implies series convergence, consider the diagram:

This shows that 32 , a,, < le f(z) dz for any N. Therefore, if [ f(z) dz converges, then le f(z)dz
is bounded (independent of N) and so 25:2 a,, is bounded by that inequality. But Z;V:z a, =Sy —ay;

so by adding a; to the bound, we see that Sy itself is bounded, which implies that 3", a,, converges.

To show that integral divergence implies series divergence, consider a similar diagram:

This shows that >V 'a, > le f(z) dz for any N. Therefore, if [ f(z) dz diverges, then le f(z)dz

goes to +o0o as N — oo, and so ZnN]l a, goes to +oo as well. So 3", a, diverges.

/ Notice: the picture shows f(z) entirely above (or below) the rectangles.

This depends upon f(z) being monotone decreasing, as well as f(z) > 0.
This explains the applicability conditions.

Next we use the integral test to evaluate the family of p-series, and later we can use p-series in
comparison tests without repeating the work of the integral test.

[o¢]
.. . . 1
A p-series is a series of this form: —
n=1 e
Convergence properties:
p > 1 : series converges p < 1: series diverges

(1) To verify the convergence properties of p-series, apply the integral test:
Applicability: verify it’s continuous, positive, decreasing.
Convert n to z to obtain the function f(z) = =

xP

Indeed zl—p is continuous and positive and decreasing as x increases.

5/7
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(2) Apply the integral test.

Integrate, assuming p # 1:

R

[e) 1 mpfl
/ —dz >> lim
. xP R-oo p—1

1

RPHL 1P+l
>> lim =
—oo \ —p+1 —-p+1

When p > 1 we have limp_, }f;—f:ll =0

When p < 1 we have limg };_,:11 =00

When p = 1, integrate a second time:

x —00

o 1 R
/ —dr >> lim Inz
1 R 1

>> lim ImR—Inl >>» o
R—00

(3) Conclude: the integral converges when p > 1 and diverges when p < 1.

/ Supplement: we could instead immediately refer to the convergence results for p-
integrals instead of reproving them here.

07 Illustration

‘= Example - p-series examples

By finding p and applying the p-series convergence properties:
We see that Y °° | —+ converges: p=1.1s0p > 1

But >, ﬁ diverges:p=1/2s0op <1

‘= Example - Integral test - pushing the envelope of convergence

1
converge?
n

o0
1
Does E ———— converge?
= n(lnn)? &

1
nlnn

Notice that Inn grows very slowly with n, so is just a /ittle smaller than % for large n, and

similarly n(]I}n)2 is just a little smaller still.

Solution

6/7
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(1) The two series lead to the two functions f(z) = —— and g(z) = m

Check applicability.

Clearly f(z) and g(z) are both continuous, positive, decreasing functions on z € [2, 00).

(2) Apply the integral test to f(z).

© 1 > 1
/ —dz >> / —du
2 xzlnz u=ln2 U

R
>> lim In u‘ >> o0
R—c0 Inl

Integrate f(z):

Conclude: Y2 , =L diverges.

(3) Apply the integral test to g(z).

Integrate g(z):

b 1 o0 1
/ ——dzr >> / — du
5 z(lnz)? et U2

R 1
>> lim fufl‘ > —
R—o0 In2 In2

Conclude: >, m converges.

717
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