
Calculus II - Lecture notes - W09
Positive series

01 Theory

02 Illustration

Direct Comparison Test (DCT)

Applicability: Both series are positive:  and .

Test Statement: Suppose  for large enough .
(Meaning: for  with some given .) Then:

Smaller pushes up bigger:

Bigger controls smaller:

Example - Direct comparison test: rational functions

(a) The series  converges by the DCT.

Choose:  and 

Check: 

Observe:  is a convergent geometric series

(b) The series  converges by the DCT.

Choose:  and .

Check: 

Observe:  is a convergent -series

Calculus II - Lecture notes - W09

1 / 12

M A



03 Theory

(c) The series  converges by the DCT.

Choose:  and 

Check:  (notice that )

Observe:  is a convergent -series

(d) The series  diverges by the DCT.

Choose:  and 

Check: 

Observe:  is a divergent -series

Some series can be compared using the DCT after applying certain manipulations and tricks.

For example, consider the series . We suspect convergence because  for large . But
unfortunately,  always, so we cannot apply the DCT.

We could make some ad hoc arguments that do use the DCT, eventually:

These convoluted arguments suggest that a more general version of Comparison is possible.

Indeed, it is sufficient to compare the limiting behavior of two series. The limit of ratios (limit of
‘comparison’) links up the convergence / divergence of  and .

Trick Method 1:
 Observe that for  we have . (Check it!)

But  converges, indeed its value is , which is .
So the series  converges.

Trick Method 2:
 Observe that we can change the letter  to  by starting the new  at .

Then we have:

This last series has terms smaller than  so the DCT with  (a convergent -series)
shows that the original series converges too.

Limit Comparison Test (LCT) - “Limiting Ratio Test”

Applicability: Both series are positive:  and .

Test Statement: Suppose that . Then:
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04 Illustration

If  or , we can still draw an inference, but in only one direction:

If :

If :

If :

Extra - Limit Comparison Test: Theory

Suppose  and . Then for  sufficiently large, we know .

Doing some algebra, we get  for  large.

If  converges, then  also converges (constant multiple), and then the DCT implies
that  converges.

Conversely: we also know that , so  for all  sufficiently large. Thus if
 converges,  also converges, and by the DCT again  converges too.

The cases with  or  are handled similarly.

Example - Limit Comparison Test examples

(a) The series  converges by the LCT.

Choose:  and .

Compare in the limit:

Observe:  is a convergent geometric series

(b) The series  diverges by the LCT.

Choose: , 

Compare in the limit:
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Alternating series

Videos

05 Theory

Observe:  is a divergent -series

(c) The series  converges by the LCT.

Choose:  and 

Compare in the limit:

Observe:  is a converging -series

Videos, Math Dr. Bob:

Alternating Series Test: Theory and basic examples
Alternating Series Test: Remainder estimates
Alternating Series Test: Further remainder estimates

Consider these series:

The absolute values of terms are the same between these series, only the signs of terms change.

The first is a positive series because there are no negative terms.

The second series is the negation of a positive series – the study of such series is equivalent to that of
positive series, just add a negative sign everywhere. These signs can be factored out of the series. (For
example .)
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The third series is an alternating series because the signs alternate in a strict pattern, every other
sign being negative.

The fourth series is not alternating, nor is it positive, nor negative: it has a mysterious or unknown
pattern of signs.

A series with any negative signs present, call it , converges absolutely when the positive
series of absolute values of terms, namely , converges.

A series might converge due to the presence of negative terms and yet not converge absolutely:

A series  is said to be converge conditionally when the series converges as it stands, but the
series produced by inserting absolute values, namely , diverges.

The alternating harmonic series above, , is therefore conditionally
convergent. Let us see why it converges. We can group the terms to create new sequences of pairs,
each pair being a positive term. This can be done in two ways. The first creates an increasing
sequence, the second a decreasing sequence:

Suppose  gives the sequence of partial sums of the original series. Then  gives the first sequence
of pairs, namely , , ,  . And  gives the second sequence of pairs, namely , , ,  .

The second sequence shows that  is bounded above by , so  is monotone increasing and bounded
above, so it converges. Similarly  is monotone decreasing and bounded below, so it converges too,
and of course they must converge to the same thing.

The fact that the terms were decreasing in magnitude was an essential ingredient of the argument for
convergence. This fact ensured that the parenthetical pairs were positive numbers.

THEOREM: Absolute implies ordinary

If a series  converges absolutely, then it also converges as it stands.

Alternating Series Test (AST) - “Leibniz Test”

Applicability: Alternating series only:  with 

Test Statement:
If:

Then:

Furthermore, partial sum errors are bounded by “subsequent terms”:

1.  are decreasing, so 
2.  as  (i.e. it passes the SDT)
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06 Illustration

Extra - Alternating Series Test: Theory

Just as for the alternating harmonic series, we can form positive paired-up series because the
terms are decreasing:

The first sequence  is monotone increasing from , and the second  is decreasing from .
The first is therefore also bounded above by . So it converges. Similarly, the second converges.
Their difference at any point is  which is equal to , and this goes to zero. So the
two sequences must converge to the same thing.

By considering these paired-up sequences and the effect of adding each new term one after the
other, we obtain the following order relations:

Thus, for any even  and any odd :

Now set  and subtract  from both sides:

Now set  and subtract  from both sides:

This covers both even cases ( ) and odd cases ( ). In either case, we have:

Example - Alternating Series Test: Basic illustration

(a)  converges by the AST.

Notice that  diverges as a -series with .

Therefore the first series converges conditionally.

(b)  converges by the AST.
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Ratio test and Root test

Videos

Notice the funny notation: .

This series converges absolutely because , which is a -series with .

Example - Approximating 

The Taylor series for  is given by:

Use this series to approximate  with an error less than .

Solution

(1) The main idea is to use  and thus . Therefore:

and thus:

(2) Write  for the error of the approximation, meaning .

By the AST error formula, we have .

We desire  such that . Therefore, calculate  such that , and then we will
know:

(3) The general term is . Plug in  in place of  to find . Now solve:

We conclude that at least  terms are necessary to be confident (by the error formula) that the
approximation of  is accurate to within .
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07 Theory

Videos, Math Dr. Bob

Ratio test: Basics
Ratio test: Ratio test + DCT
Root test: Basics
Root test: for 

Ratio Test (RaT)

Applicability: Any series with nonzero terms.

Test Statement:

Suppose that  as .

Then:

Extra - Ratio test: explanation

To understand the ratio test, consider this series:

When , the multiplication factor giving the next term is necessarily less than . Therefore,
when , the terms shrink faster than those of a geometric series having . Therefore this
series converges.

Similarly, consider this series:

Write  for the ratio from the prior term  to the current term . For this series,
.

This ratio falls below  when , after which the terms necessarily shrink faster than those
of a geometric series with . Therefore this series converges.

The main point of the discussion can be stated like this:

The term  is given by multiplying the prior term by .
The term  is given by multiplying the prior term by .
The term  is created by multiplying the prior term by .
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08 Illustration

Whenever this is the case, then eventually the ratios are bounded below some , and the
series terms are smaller than those of a converging geometric series.

Extra - Ratio test: proof

Let us write  for the ratio to the next term from term .

Suppose that  as , and that . This means: eventually the ratio of terms is close
to ; so eventually it is less than .

More specifically, let us define . This is the point halfway between  and . Since ,
we know that eventually .

Any geometric series with ratio  converges. Set  for  big enough that . Then the
terms of our series satisfy , and the series starting from  is absolutely convergent
by comparison to this geometric series.

(Note that the terms  do not affect convergence.)

Example - Ratio test

(a) Observe that  has ratio  and thus . Therefore the RaT implies

that this series converges.

Simplify the ratio:

Notice this technique! We frequently use these rules:

(To simplify ratios with exponents and factorials.)

(b)  has ratio .

Simplify this:
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09 Theory

So the series converges absolutely by the ratio test.

(c) Observe that  has ratio  as .

So the ratio test is inconclusive, even though this series fails the SDT and obviously diverges.

(d) Observe that  has ratio  as .

So the ratio test is inconclusive, even though the series converges as a -series with .

(e) More generally, the ratio test is usually inconclusive for rational functions; it is more effective
to use LCT with a -series.

Root Test (RooT)

Applicability: Any series.

Test Statement:

Suppose that  as .

Then:

Extra - Root test: explanation

The fact that  and  implies that eventually  for all high enough , where
 is the midpoint between  and .

Now, the equation  is equivalent to the equation .

Therefore, eventually the terms  are each less than the corresponding terms of this convergent
geometric series:
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10 Illustration

Example - Root test examples

(a) Observe that  has roots of terms:

Because , the RooT shows that the series converges absolutely.

(b) Observe that  has roots of terms:

Because , the RooT shows that the series converges absolutely.

(c) Observe that  converges because  as .

Example - Ratio test versus root test

Determine whether the series  converges absolutely or conditionally or diverges.

Solution

Before proceeding, rewrite somewhat the general term as .

Now we solve the problem first using the ratio test. By plugging in  we see that

So for the ratio  we have:

Therefore the series converges absolutely by the ratio test.
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Now solve the problem again using the root test. We have for :

To compute the limit as  we must use logarithmic limits and L’Hopital’s Rule. So, first take
the log:

Then for the first term apply L’Hopital’s Rule:

So the first term goes to zero, and the second (constant) term is the value of the limit. So the log
limit is , and the limit (before taking logs) must be  (inverting the log using ) and this is

. Since , the root test also shows that the series converges absolutely.
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