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Positive series

01 Theory

g9 Direct Comparison Test (DCT)
Applicability: Both series are positive: a, > 0 and b,, > 0.

Test Statement: Suppose a,, < b, for large enough n.
(Meaning: for n > N with some given N.) Then:

Smaller pushes up bigger:

o0 o0
Z an diverges — Z b, diverges
n=1 n=1
Bigger controls smaller:
00 o0
Z b, converges = Z a, converges
n=1 n=1

02 Illustration

:= Example - Direct comparison test: rational functions

> 1
a) The series converges by the DCT.
Choose: an = —2— and b, = 3+

V/n3n

. 1 1
Check: 0 < Tne S 3

Observe: Y, 3% is a convergent geometric series

CO!

s2n
n3

converges by the DCT.

(b) The series Z
n=1

o __ cos’n _ 1
Choose: a,, = <% and b, = .

Check:%“ﬁ# <L

Observe: Y ,,1—3 is a convergent p-series

1/12



Looks Lke 0 Calculus Il - Lecture notes - W09
% ien E
& n
(c) The series E converges by the DCT. pemlex
mniel @//‘ © a0
N~ n e = 2D -

o __n _ 1 —
Choose: an—ng—ﬂand by = = A=

Check%# < L (notice that = < 2

L ,n'ci (. sz

P
Observe: Y L is a convergent p-series UNQ) 69
n x p € ton —to kngw

3 lo
<9 o) ~
L9V~ pn3, Z: W av

°° 1
(d) The series Z — diverges by the DCT.
n=2

Choose: a,, = + and b, = 1+

Check: 0 < % < =

n—1

Observe: Y % is a divergent p-series

Some series can be compared using the DCT after applying certain manipulations and tricks.

For example, consider the series >, ﬁ We suspect convergence because a,, ~ # for large n. But

unfortunately, a, > # always, so we cannot apply the DCT.
We could make some ad hoc arguments that do use the DCT, eventually:

Trick Method 1:
Observe that for n > 1 we have '~ < 43 (Check it!)

10 ; : : 1 EC T (1)
But ) -7 converges, indeed its value is 10 - ) >, which is —5~.

So the series 3 —— converges.

n?2-1
Trick Method 2:
Observe that we can change the letter n to n + 1 by starting the new n at n = 1.

Then we have:

2 1 > 1 > 1
;1#71 N ;(n+1)2,1 B ;n2+2n

This last series has terms smaller than - so the DCT with b, = # (a convergent p-series)

n

shows that the original series converges too.
These convoluted arguments suggest that a more general version of Comparison is possible.

Indeed, it is sufficient to compare the limiting behavior of two series. The limit of ratios (limit of

‘comparison’) links up the convergence / divergence of 3 a, and >_b,.

L, = Gn oy ga=laby
n

bn

Applicability: Both series are positive: a, > 0 and b,, > 0.

Test Statement: Suppose that lim,,_,» Z—" = L. Then:
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If0< L < oo

Za" converges <— an converges U

If L =0o0r L = oo, we can still draw an inference, but in only one direction:

IfL=0:
a n = Ln bw
Z b, converges = Z a, converges
If L = oo:

an diverges B Zan diverges

Suppose a, /b, — L and 0 < L < co. Then for n sufficiently large, we know a, /b, < L + 1.
¢ (L) by,

Qa

Doing some algebra, we get a, < (L + 1)b,, for n large.

If > b, converges, then > (L + 1)b, also converges (constant multiple), and then the DCT implies
that > a, converges.

Conversely: we also know that b,/a, — 1/L, so b, < (1/L + 1)a, for all n sufficiently large. Thus if
> an converges, > .(1/L + 1)a, also converges, and by the DCT again ) b, converges too.

The cases with L = 0 or L = oo are handled similarly.

:= Example - Limit Comparison Test examples

(a) The series Z 2 T converges by the LCT.
n=1 -

Choose: a, = 2"—171 and b, = 2—1“

Compare in the limit:

n

. an .
nhl]goﬁ >>> 7113202n_1 >>» 1 =17
Observe: Z is a convergent geometric series
o 2 oL [ Precaely ¢

2n? + 3n - v (ﬁ’ JCETAN T
(b) The series Z n Ton diverges by the LCT. f gt} Ve Vi

V 5 =+ n \ﬁ o oo wér?

2E e = )= [
|
0 _ 2n’43n —nl2 - —

Choose: a,, N b,=n =

Compare in the limit:
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2n? + 3
m % e Iim 20 T30VR
n—o0 bn n—o0 1/5_|_n5

(2n? + 3n)y/n o 2n5/2
V5 +nbd nb/?

Observe: S n /2 is a divergent p-series

—2 =: L

00 2
(c) The series Z 4n—1 converges by the LCT.
n=2 n-—n-—

n

and b, =n"2 = 4

. p— n
Choose: a, = —"— p

Compare in the limit:

n4

lim% >> lim—— > 1= 1

n—oo by noont—n—1

Observe: Y o ,n 2 is a converging p-series

Alternating series

Videos, Math Dr. Bob:

Alternating Series Test: Theory and basic examples

Alternating Series Test: Remainder estimates

Alternating Series Test: Further remainder estimates

Consider these series:

1+1+1+1+1+1+1+ = o0
2 3 45 6 71 N

1 L =
4 o0
LT B S U 2
- _ — _ [ —_— . = n
23 4 5 6 7
1 1 1 1
14— 4 - _2_= 4. = 7
+ +t7173 +o+

The absolute values of terms are the same between these series, only the signs of terms change.
The first is a positive series because there are no negative terms.

The second series is the negation of a positive series — the study of such series is equivalent to that of
positive series, just add a negative sign everywhere. These signs can be factored out of the series. (For
example > -1 =" 1) (e n

6V€f] . Z /-')0(,4 (an >O)

( ol H \ N=o
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The third series is an alternating series because the signs alternate in a strict pattern, every other

sign being negative.

The fourth series is not alternating, nor is it positive, nor negative: it has a mysterious or unknown

pattern of signs.

A series with any negative signs present, call it ) > | a,, converges absolutely when the positive

series of absolute values of terms, namely >, |a,|, converges.

THEOREM: Absolute implies ordinary

If a series >,° a, converges absolutely, then it also converges as it stands.

A series might converge due to the presence of negative terms and yet not converge absolutely:
A series ) | a, is said to be converge conditionally when the series converges as it stands, but the
series produced by inserting absolute values, namely . |an|, diverges.

The alternating harmonic series above, 1 — + + + — 1 +... = In2, is therefore conditionally

convergent. Let us see why it converges. We can group the terms to create new sequences of pairs,
each pair being a positive term. This can be done in two ways. The first creates an increasing

sequence, the second a decreasing sequence:

. ine £ 0 1 1 " 1 1 n 1 1 n 1 1 n
INCr: 110, rom U: - - - — = - — = - 5 e
creasing fro 2 34 5 6 78
1 1 1 1 1 1
3 f 1: 1_ —_ = — —_ = — [ — e
decreasing from ( 7 3) ( 1 5) ( 6 7)

Suppose Sy gives the sequence of partial sums of the original series. Then Sy gives the first sequence

of pairs, namely Ss, S4, Se, ... . And San_1 gives the second sequence of pairs, namely S1, S3, S5, ... .

The second sequence shows that Sy is bounded above by 1, so S2x 1s monotone increasing and bounded
above, so it converges. Similarly S2y_1 is monotone decreasing and bounded below, so it converges too,

and of course they must converge to the same thing.

The fact that the terms were decreasing in magnitude was an essential ingredient of the argument for

convergence. This fact ensured that the parenthetical pairs were positive numbers.

Applicability: Alternating series only: > oo ;(—1)""a, with a,, > 0

Test Statement:
If:

Q a, are decreasing, S0 a; > ay > a3 > ay > -+ > 0

an, — 0 asn — oo (i.e. it passes the SDT)

Then:

00
Z(—l)"‘lan converges

n=1

Furthermore, partial sum errors are bounded by “subsequent terms”:
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" pext
‘S—SN\ <anti -l-erM u

bouacl

Just as for the alternating harmonic series, we can form positive paired-up series because the

terms are decreasing:
(a1 — az) + (a3 — a4) + (a5 — ag) + -
a; — (ay — ag) — (a4 — as) — (ag —ag) — -

The first sequence S,y is monotone increasing from 0, and the second S,y _; is decreasing from a;.
The first is therefore also bounded above by a;. So it converges. Similarly, the second converges.
Their difference at any point is Son — Soy_1 Which is equal to —asy, and this goes to zero. So the

two sequences must converge to the same thing.

By considering these paired-up sequences and the effect of adding each new term one after the

other, we obtain the following order relations:
0<S <81 <8< -+ <8< - <8 <8<S1=a1
Thus, for any even 2N and any odd 2M — 1:

Son < 8 < Sonr—1
Now set M = N and subtract Ssny_1 from both sides:

Son — San-1 < 8 — San-1 <0
>>  —agy < S — SgN_l <0

Now set M = N + 1 and subtract Sy from both sides:

0< S—SQN < SzN+1 _SZN

>> 0< 85— Sy < asn+1
This covers both even cases (n = 2N) and odd cases (n = 2N — 1). In either case, we have:

|S_ Sn‘ < Qp+1

:= Example - Alternating Series Test: Basic illustration

-1 n—1

o~ (1)
(a) ———— converges by the AST.
X

Notice that ) ﬁ diverges as a p-series with p =1/2 < 1.

Therefore the first series converges conditionally.

(b) Z cos ;ur converges by the AST.
n=1

n
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Notice the funny notation: cosnm = (—1)".

This series converges absolutely because |<=2% | = L. which is a p-series with p =2 > 1.

n2

‘= Example - Approximating =

The Taylor series for tan~! z is given by:

tan-! :L'3+:1:5 a:7+
anlz=20-—- "+ - - 4...
3 5 7

Use this series to approximate m with an error less than 0.001.
Solution

(1) The main idea is to use tan 4 = 1 and thus tan"11 = 7 - Therefore:

and thus:

(2) Write E, for the error of the approximation, meaning E, = S — Sj.
By the AST error formula, we have |E,| < an+1.

We desire n such that |E,| < 0.001. Therefore, calculate n such that a,+1 < 0.001, and then we will

know:

|En| < an+1 < 0.001

(3) The general term is a, = 5—. Plug in n + 1 in place of n to find ans1 = #ﬂ. Now solve:

< 0.001

an+1 =

2n+1

4
—_*  com+1
>> ool ~ Tt

>> 3999 < 2n

>> 2000 <n

We conclude that at least 2000 terms are necessary to be confident (by the error formula) that the

approximation of 7 is accurate to within 0.001.

Ratio test and Root test

7112
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Videos, Math Dr. Bob

Ratio test: Basics

Ratio test: Ratio test + DCT
Root test: Basics

Root test: for (1 — 1/n2)""

07 Theory

Ratio Test (RaT)
Applicability: Any series with nonzero terms.

Test Statement:

Suppose that Intll _, Lasn— co.
Qn
Then:
00
L<1: Zan converges absolutely
n=1
o0
L>1: Zan diverges
n=1
L =1or DNE : test inconclusive
- 2
-2 Z\a
e - = ( 2 ) '
To understand the ratio test, consider this series: 3-2-
2
2
S 2 22 9 2z = [3)as
— = 1+ttt g3t
] [ ] 1
= n! 1! 2! 3! _ /5) /%JG('
The term g—f is given by multiplying the prior term by % ek i :
The term i—? is given by multiplying the prior term by %. g = % — 0
: n

The term a, is created by multiplying the prior term by %

When n > 3, the multiplication factor giving the next term is necessarily less than % Therefore,
when n > 3, the terms shrink faster than those of a geometric series having r = % Therefore this
series converges.

Similarly, consider this series:

Lot 10 107 10t
2o = Mrytartar

Write R, = =~ for the ratio from the prior term a,_1 to the current term a,. For this series,

n—1
__ 10
R,=1.

This ratio falls below }—(IJ when n > 11, after which the terms necessarily shrink faster than those
of a geometric series with r = 2. Therefore this series converges.

The main point of the discussion can be stated like this:
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R,—L<1 as n— o

Whenever this is the case, then eveniually the ratios are bounded below some r < 1, and the

series terms are smaller than those of a converging geometric series.

Ani1
an

Let us write R,, = for the ratio to the next term from term n.

Suppose that R, — L as n — oo, and that L < 1. This means: eventually the ratio of terms is close

to L; so eventually it is less than 1.

More specifically, let us define r = % This is the point halfway between L and 1. Since R,, — L,
we know that eventually R, < r.

Any geometric series with ratio r converges. Set ¢ = ay for N big enough that Ry < r. Then the
terms of our series satisfy |an+n| < cr”, and the series starting from ay is absolutely convergent

by comparison to this geometric series.

(Note that the terms a1, ..., ay—1 do not affect convergence.)

:= Example - Ratio test

10"
n!

(o)
(a) Observe that Z has ratio R,, = nl—fl and thus R, — 0 = L < 1. Therefore the RaT implies
n=0

that this series converges.

Nl

Simplify the ratio: |D
=0
10n+1 (,\ =0 ) .
(n+1)! o ( ! nl
loﬂ 10™
n
. 10-10"  n! .. 10 e
(n+1)n! 107 n+1

Notice this technique! We frequently use these rules:
10"t = 10" - 10, (n+1)!'=(n+1)n!

(To simplify ratios with exponents and factorials.)

X, n? . 2
(b) Z o has ratio R,, = (';f—fl)/;—:

n=1

Simplify this:

on+1 >> T ontl 2

(n+1)2 ’I’L2 (n+1)2 on
/2_" Doggl n?2
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(n+1)2.27 n?+2n+1 nooo 1
>> — >> — — =

_ L
n2.2.2n 2n2 2

So the series converges absolutely by the ratio test.

& . 242 1
(c) Observe that E n? has ratio R,, = % —lasn — oo.
n
n=1

So the ratio test is inconclusive, even though this series fails the SDT and obviously diverges.

2

o0
1 .
(d) Observe that E = has ratio R, = 2n— — 1lasn — oo.
—~n n“+2n+1

So the ratio test is inconclusive, even though the series converges as a p-series with p =2 > 1.

(e) More generally, the ratio test is usually inconclusive for rational functions; it is more effective
to use LCT with a p-series.

09 Theory

Root Test (RooT)
Applicability: Any series.
Test Statement:

Suppose that {/|a,| — L as n — oo.

I
\

Then: /n
\ aﬂ ‘ 00
L<1: Zan converges absolutely

n=1
(e

L>1: Zan diverges
n=1

L =1 or DNE : test inconclusive

L+
r= =

The fact that {/|a,| — L and L < 1 implies that eventually {/|a,| < r for all high enough n, where

r= % is the midpoint between L and 1.

Now, the equation +/|a,| < r is equivalent to the equation |a,| < 7".

Therefore, eventually the terms |a,| are each less than the corresponding terms of this convergent
geometric series:
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n

o= 1tr+ri et

NgE

3
Il
-

:= Example - Root test examples

(a) Observe that Z <l> has roots of terms:
n=1 w®

n\ 1/n
|an|1/n:(<l) ) e
n n

Because L < 1, the RooT shows that the series converges absolutely.

(o] " n n ]
(b) Observe that Z(—l) < 1 ) has roots of terms:

n=1

ol = 2 25 2=
Il = o1 2~

Because L < 1, the RooT shows that the series converges absolutely.

(o] 3 n
(c) Observe that E <—> converges because v/|a,| = £ — 0 as n — co.
n

n=1

:= Example - Ratio test versus root test

[e ]
Determine whether the series Z % converges absolutely or conditionally or diverges.
n=1 \\b ,nj n n
st (s
Solution = JE 77 .
Before proceeding, rewrite somewhat the general term as (%) ’ . (%) .

Now we solve the problem first using the ratio test. By plugging in n + 1 we see that

B n+ 1 2 4 n+1
An+1 = 5 5
So for the ratio R, we have:

%“ . nt1\? é n+1 E 2 é n
Qan - 5 5 n 4
n2+2n+1.£

n? 5

4
>> —>g<1asn—>oo

Therefore the series converges absolutely by the ratio test.
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Yo N JL“Q’ M’\An/t
< {Zor/\"

Now solve the problem again using the root test. We have for /|a,|: /

(@G - —2?

To compute the limit as n — oo we must use logarithmic limits and I’Hopital’s Rule. So, first take
the log:

In (2)2/".3 2 imdt  —— M s
5 5 n 5

. . £a (s
Then for the first term apply L’Hopital’s Rule: lo} < 5/
o e =
n d/dz 1 1 S
Ing — w5 5 1/n 2
—_— >> = >> — —0asn— o0
1/2 n

d/dz
n/2/—> 1/2

So the first term goes to zero, and the second (constant) term is the value of the limit. So the log

limit is In 4, and the limit (before taking logs) must be e (inverting the log using e®) and this is

5 9
4. Since 4 < 1, the root test also shows that the series converges absolutely.
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