
Calculus II - Lecture notes - W09
Positive series

01 Theory

02 Illustration

Direct Comparison Test (DCT)

Applicability: Both series are positive: an > 0 and bn > 0.

Test Statement: Suppose an ≤ bn for large enough n.
(Meaning: for n ≥ N  with some given N .) Then:

Smaller pushes up bigger:

∞

∑
n=1

an diverges ⟹

∞

∑
n=1

bn diverges

Bigger controls smaller:

∞

∑
n=1

bn converges ⟹

∞

∑
n=1

an converges

Example - Direct comparison test: rational functions

(a) The series 
∞

∑
n=1

1

√n 3n
 converges by the DCT.

Choose: an = 1
√n 3n

 and bn = 1
3n

Check: 0 < 1
√n 3n

≤ 1
3n

Observe: ∑ 1
3n  is a convergent geometric series

(b) The series 
∞

∑
n=1

cos2 n

n3
 converges by the DCT.

Choose: an = cos2 n
n3  and bn = 1

n3 .

Check: 0 ≤ cos2 n
n3 ≤ 1

n3

Observe: ∑ 1
n3  is a convergent p-series
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03 Theory

(c) The series 
∞

∑
n=1

n

n3 + 1
 converges by the DCT.

Choose: an = n

n3+1
 and bn = 1

n2

Check: 0 ≤ n
n3+1 ≤ 1

n2  (notice that n
n3+1 ≤ n

n3 )

Observe: ∑ 1
n2  is a convergent p-series

(d) The series 
∞

∑
n=2

1

n− 1
 diverges by the DCT.

Choose: an = 1
n

 and bn = 1
n−1

Check: 0 ≤ 1
n ≤ 1

n−1

Observe: ∑ 1
n  is a divergent p-series

Some series can be compared using the DCT after applying certain manipulations and tricks.

For example, consider the series ∑∞
n=2

1
n2−1

. We suspect convergence because an ≈ 1
n2  for large n. But

unfortunately, an > 1
n2  always, so we cannot apply the DCT.

We could make some ad hoc arguments that do use the DCT, eventually:

These convoluted arguments suggest that a more general version of Comparison is possible.

Indeed, it is sufficient to compare the limiting behavior of two series. The limit of ratios (limit of
‘comparison’) links up the convergence / divergence of ∑ an and ∑ bn.

Trick Method 1:
​ Observe that for n > 1 we have 1

n2−1
≤ 10

n2 . (Check it!)

But ∑ 10
n2  converges, indeed its value is 10 ⋅∑ 1

n2 , which is 10π2

6 .
So the series ∑ 1

n2−1
 converges.

Trick Method 2:
​ Observe that we can change the letter n to n+ 1 by starting the new n at n = 1.

Then we have:
∞

∑
n=2

1

n2 − 1
=

∞

∑
n=1

1

(n+ 1)2 − 1
=

∞

∑
n=1

1

n2 + 2n

This last series has terms smaller than 1
n2  so the DCT with bn = 1

n2  (a convergent p-series)
shows that the original series converges too.

Limit Comparison Test (LCT) - “Limiting Ratio Test”

Applicability: Both series are positive: an > 0 and bn > 0.

Test Statement: Suppose that limn→∞
an

bn
= L. Then:
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04 Illustration

If L = 0 or L = ∞, we can still draw an inference, but in only one direction:

If 0 < L < ∞:

∑ an converges ⟺ ∑ bn converges

If L = 0:

∑ bn converges ⟹ ∑ an converges

If L = ∞:

∑ bn diverges ⟹ ∑ an diverges

Extra - Limit Comparison Test: Theory

Suppose an/bn → L and 0 < L < ∞. Then for n sufficiently large, we know an/bn < L+ 1.

Doing some algebra, we get an < (L+ 1)bn for n large.

If ∑ bn converges, then ∑(L+ 1)bn also converges (constant multiple), and then the DCT implies
that ∑ an converges.

Conversely: we also know that bn/an → 1/L, so bn < (1/L+ 1)an for all n sufficiently large. Thus if
∑ an converges, ∑(1/L+ 1)an also converges, and by the DCT again ∑ bn converges too.

The cases with L = 0 or L = ∞ are handled similarly.

Example - Limit Comparison Test examples

(a) The series 
∞

∑
n=1

1

2n − 1
 converges by the LCT.

Choose: an = 1
2n−1  and bn = 1

2n .

Compare in the limit:

lim
n→∞

an

bn
≫≫ lim

n→∞

2n

2n − 1
≫≫ 1 =: L

Observe: ∑ 1
2n  is a convergent geometric series

(b) The series 
∞

∑
n=1

2n2 + 3n

√5 + n5
 diverges by the LCT.

Choose: an = 2n2+3n
√5+n5

, bn = n−1/2

Compare in the limit:
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Alternating series

Videos

05 Theory

lim
n→∞

an

bn
≫≫ lim

n→∞

(2n2 + 3n)√n

√5 + n5

(2n2 + 3n)√n

√5 + n5

n→∞
⟶

2n5/2

n5/2
→ 2 =: L

Observe: ∑n−1/2 is a divergent p-series

(c) The series 
∞

∑
n=2

n2

n4 − n− 1
 converges by the LCT.

Choose: an = n2

n4−n−1
 and bn = n−2

Compare in the limit:

lim
n→∞

an

bn
≫≫ lim

n→∞

n4

n4 − n− 1
≫≫ 1 =: L

Observe: ∑∞
n=2 n

−2 is a converging p-series

Videos, Math Dr. Bob:

Alternating Series Test: Theory and basic examples
Alternating Series Test: Remainder estimates
Alternating Series Test: Further remainder estimates

Consider these series:

The absolute values of terms are the same between these series, only the signs of terms change.

The first is a positive series because there are no negative terms.

The second series is the negation of a positive series – the study of such series is equivalent to that of
positive series, just add a negative sign everywhere. These signs can be factored out of the series. (For
example ∑− 1

n = −∑ 1
n .)

1 +
1
2
+

1
3
+

1
4
+

1
5
+

1
6
+

1
7
+⋯ = ∞

−1 −
1

2
−

1

3
−

1

4
−

1

5
−

1

6
−

1

7
−⋯ = −∞

1−
1

2
+

1

3
−

1

4
+

1

5
−

1

6
+

1

7
−⋯ = ln 2

1 +
1

2
−

1

3
+

1

4
−

1

5
−

1

6
+

1

7
+⋯ = ?
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The third series is an alternating series because the signs alternate in a strict pattern, every other
sign being negative.

The fourth series is not alternating, nor is it positive, nor negative: it has a mysterious or unknown
pattern of signs.

A series with any negative signs present, call it ∑∞
n=1 an, converges absolutely when the positive

series of absolute values of terms, namely ∑∞
n=1 |an|, converges.

A series might converge due to the presence of negative terms and yet not converge absolutely:

A series ∑∞
n=1 an is said to be converge conditionally when the series converges as it stands, but the

series produced by inserting absolute values, namely ∑∞
n=1 |an|, diverges.

The alternating harmonic series above, 1 − 1
2
+ 1

3
− 1

4
+⋯ = ln 2, is therefore conditionally

convergent. Let us see why it converges. We can group the terms to create new sequences of pairs,
each pair being a positive term. This can be done in two ways. The first creates an increasing
sequence, the second a decreasing sequence:

Suppose SN  gives the sequence of partial sums of the original series. Then S2N  gives the first sequence
of pairs, namely S2, S4, S6, … . And S2N−1 gives the second sequence of pairs, namely S1, S3, S5, … .

The second sequence shows that SN  is bounded above by 1, so S2N  is monotone increasing and bounded
above, so it converges. Similarly S2N−1 is monotone decreasing and bounded below, so it converges too,
and of course they must converge to the same thing.

The fact that the terms were decreasing in magnitude was an essential ingredient of the argument for
convergence. This fact ensured that the parenthetical pairs were positive numbers.

THEOREM: Absolute implies ordinary

If a series ∑∞
n=1 an converges absolutely, then it also converges as it stands.

increasing from 0: (1 −
1

2
)+ ( 1

3
−

1

4
)+ ( 1

5
−

1

6
)+ ( 1

7
−

1

8
)+⋯

decreasing from 1: 1 − ( 1

2
−

1

3
)− ( 1

4
−

1

5
)− ( 1

6
−

1

7
)−⋯

Alternating Series Test (AST) - “Leibniz Test”

Applicability: Alternating series only: ∑∞
n=1(−1)n−1an with an > 0

Test Statement:
If:

Then:

∞

∑
n=1

(−1)n−1an converges

Furthermore, partial sum errors are bounded by “subsequent terms”:

1. an are decreasing, so a1 > a2 > a3 > a4 > ⋯ > 0

2. an → 0 as n → ∞ (i.e. it passes the SDT)

Calculus II - Lecture notes - W09

5 / 12



06 Illustration

|S − SN | ≤ aN+1

Extra - Alternating Series Test: Theory

Just as for the alternating harmonic series, we can form positive paired-up series because the
terms are decreasing:

The first sequence S2N  is monotone increasing from 0, and the second S2N−1 is decreasing from a1.
The first is therefore also bounded above by a1. So it converges. Similarly, the second converges.
Their difference at any point is S2N − S2N−1 which is equal to −a2N , and this goes to zero. So the
two sequences must converge to the same thing.

By considering these paired-up sequences and the effect of adding each new term one after the
other, we obtain the following order relations:

0 < S2 < S4 < S6 < ⋯ < S < ⋯ < S5 < S3 < S1 = a1

Thus, for any even 2N  and any odd 2M − 1:

S2N < S < S2M−1

Now set M = N  and subtract S2N−1 from both sides:

Now set M = N + 1 and subtract S2N  from both sides:

This covers both even cases (n = 2N) and odd cases (n = 2N − 1). In either case, we have:

|S − Sn| < an+1

(a1 − a2) + (a3 − a4) + (a5 − a6) +⋯

a1 − (a2 − a3) − (a4 − a5) − (a6 − a7) −⋯

S2N − S2N−1 < S − S2N−1 < 0

≫≫ −a2N < S − S2N−1 < 0

0 < S − S2N < S2N+1 − S2N

≫≫ 0 < S − S2N < a2N+1

Example - Alternating Series Test: Basic illustration

(a) 
∞

∑
n=1

(−1)n−1

√n
 converges by the AST.

Notice that ∑ 1
√n

 diverges as a p-series with p = 1/2 < 1.

Therefore the first series converges conditionally.

(b) 
∞

∑
n=1

cosnπ

n2
 converges by the AST.
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Ratio test and Root test

Videos

Notice the funny notation: cosnπ = (−1)n.

This series converges absolutely because cosnπ
n2 = 1

n2 , which is a p-series with p = 2 > 1.∣ ∣Example - Approximating π

The Taylor series for tan−1 x is given by:

tan−1 x = x−
x3

3
+

x5

5
−

x7

7
+⋯

Use this series to approximate π with an error less than 0.001.

Solution

(1) The main idea is to use tan π
4 = 1 and thus tan−1 1 = π

4 . Therefore:

π

4
= 1 −

1
3
+

1
5
−

1
7
+⋯

and thus:

π = 4 −
4
3
+

4
5
−

4
7
+⋯

(2) Write En for the error of the approximation, meaning En = S − Sn.

By the AST error formula, we have |En| < an+1.

We desire n such that |En| < 0.001. Therefore, calculate n such that an+1 < 0.001, and then we will
know:

|En| < an+1 < 0.001

(3) The general term is an = 4
2n−1 . Plug in n+ 1 in place of n to find an+1 = 4

2n+1 . Now solve:

We conclude that at least 2000 terms are necessary to be confident (by the error formula) that the
approximation of π is accurate to within 0.001.

an+1 =
4

2n+ 1
< 0.001

≫≫
4

0.001
< 2n+ 1

≫≫ 3999 < 2n

≫≫ 2000 ≤ n
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07 Theory

Videos, Math Dr. Bob

Ratio test: Basics
Ratio test: Ratio test + DCT
Root test: Basics
Root test: for ∑(1 − 1/n2)n

3

Ratio Test (RaT)

Applicability: Any series with nonzero terms.

Test Statement:

Suppose that an+1

an
⟶ L as n → ∞.

Then: ∣ ∣ L < 1 :
∞

∑
n=1

an converges absolutely

L > 1 :
∞

∑
n=1

an diverges

L = 1 or DNE : test inconclusive

Extra - Ratio test: explanation

To understand the ratio test, consider this series:

∞

∑
n=0

2n

n!
= 1 +

2

1!
+

22

2!
+

23

3!
+⋯

When n > 3, the multiplication factor giving the next term is necessarily less than 2
3 . Therefore,

when n > 3, the terms shrink faster than those of a geometric series having r = 2
3

. Therefore this
series converges.

Similarly, consider this series:
∞

∑
n=0

10n

n!
= 1 +

10

1!
+

102

2!
+

103

3!
+⋯

Write Rn = an
an−1

 for the ratio from the prior term an−1 to the current term an. For this series,
Rn = 10

n
.

This ratio falls below 10
11  when n > 11, after which the terms necessarily shrink faster than those

of a geometric series with r = 10
11 . Therefore this series converges.

The main point of the discussion can be stated like this:

The term 23

3!
 is given by multiplying the prior term by 2

3
.

The term 24

4!
 is given by multiplying the prior term by 2

4
.

The term an is created by multiplying the prior term by 2
n .
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08 Illustration

Rn → L < 1 as n → ∞

Whenever this is the case, then eventually the ratios are bounded below some r < 1, and the
series terms are smaller than those of a converging geometric series.

Extra - Ratio test: proof

Let us write Rn = an+1

an
 for the ratio to the next term from term n.

Suppose that Rn → L as n → ∞, and that L < 1. This means: eventually the ratio of terms is close
to L; so eventually it is less than 1.

More specifically, let us define r = L+1
2 . This is the point halfway between L and 1. Since Rn → L,

we know that eventually Rn < r.

Any geometric series with ratio r converges. Set c = aN  for N  big enough that RN < r. Then the
terms of our series satisfy |aN+n| ≤ crn, and the series starting from aN  is absolutely convergent
by comparison to this geometric series.

(Note that the terms a1, … , aN−1 do not affect convergence.)∣ ∣Example - Ratio test

(a) Observe that 
∞

∑
n=0

10n

n!
 has ratio Rn = 10

n+1  and thus Rn → 0 = L < 1. Therefore the RaT implies

that this series converges.

Simplify the ratio:

Notice this technique! We frequently use these rules:

10n+1 = 10n ⋅ 10, (n+ 1)! = (n+ 1)n!

(To simplify ratios with exponents and factorials.)

(b) 
∞

∑
n=1

n2

2n
 has ratio Rn = (n+1)2

2n+1 / n2

2n
.

Simplify this:

(n+ 1)2

2n+1
/ n2

2n
≫≫

(n+ 1)2

2n+1
⋅
2n

n2

10n+1

(n+ 1)!

n!

10n

≫≫
(n+ 1)!

10n+1
⋅
n!

10n

≫≫
10 ⋅ 10n

(n+ 1)n!
⋅
n!

10n
≫≫

10

n+ 1

n→∞
⟶ 0
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09 Theory

≫≫
(n+ 1)2 ⋅ 2n

n2 ⋅ 2 ⋅ 2n
≫≫

n2 + 2n+ 1

2n2

n→∞
⟶

1

2
= L

So the series converges absolutely by the ratio test.

(c) Observe that 
∞

∑
n=1

n2 has ratio Rn =
n2 + 2n+ 1

n2
→ 1 as n → ∞.

So the ratio test is inconclusive, even though this series fails the SDT and obviously diverges.

(d) Observe that 
∞

∑
n=1

1

n2
 has ratio Rn =

n2

n2 + 2n+ 1
→ 1 as n → ∞.

So the ratio test is inconclusive, even though the series converges as a p-series with p = 2 > 1.

(e) More generally, the ratio test is usually inconclusive for rational functions; it is more effective
to use LCT with a p-series.

Root Test (RooT)

Applicability: Any series.

Test Statement:

Suppose that n√|an|⟶ L as n → ∞.

Then:

L < 1 :
∞

∑
n=1

an converges absolutely

L > 1 :
∞

∑
n=1

an diverges

L = 1 or DNE : test inconclusive

Extra - Root test: explanation

The fact that n√|an| → L and L < 1 implies that eventually n√|an| < r for all high enough n, where
r = L+1

2  is the midpoint between L and 1.

Now, the equation n√|an| < r is equivalent to the equation |an| < rn.

Therefore, eventually the terms |an| are each less than the corresponding terms of this convergent
geometric series:
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10 Illustration

∞

∑
n=1

rn = 1 + r+ r2 + r3 +⋯

Example - Root test examples

(a) Observe that 
∞

∑
n=1

( 1

n
)

n

 has roots of terms:

|an|
1/n = (( 1

n
)

n

)
1/n

=
1
n

n→∞
⟶ 0 = L

Because L < 1, the RooT shows that the series converges absolutely.

(b) Observe that 
∞

∑
n=1

(−1)n( n

2n+ 1
)

n

 has roots of terms:

n√|an| =
n

2n+ 1

n→∞
⟶

1

2
= L

Because L < 1, the RooT shows that the series converges absolutely.

(c) Observe that 
∞

∑
n=1

( 3

n
)

n

 converges because n√|an| =
3
n
→ 0 as n → ∞.

Example - Ratio test versus root test

Determine whether the series 
∞

∑
n=1

n24n

5n+2
 converges absolutely or conditionally or diverges.

Solution

Before proceeding, rewrite somewhat the general term as ( n
5
)
2

⋅ ( 4

5
)

n

.

Now we solve the problem first using the ratio test. By plugging in n+ 1 we see that

an+1 = ( n+ 1

5
)

2

⋅ ( 4

5
)

n+1

So for the ratio Rn we have:

Therefore the series converges absolutely by the ratio test.

( n+ 1

5
)

2

⋅ ( 4

5
)

n+1

⋅ ( 5

n
)

2

⋅ ( 5

4
)

n

≫≫
n2 + 2n+ 1

n2
⋅
4
5
⟶

4
5

< 1 as n → ∞
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Now solve the problem again using the root test. We have for n√|an|:

(( n
5
)
2
⋅ ( 4

5
)

n

)
1/n

= ( n
5
)
2/n

⋅
4

5

To compute the limit as n → ∞ we must use logarithmic limits and L’Hopital’s Rule. So, first take
the log:

ln(( n
5
)
2/n

⋅
4

5
) =

2

n
ln

n

5
+ ln

4

5

Then for the first term apply L’Hopital’s Rule:

ln n
5

d/dx
⟶

1
n/5

⋅ 1
5

n/2
d/dx
⟶ 1/2

≫≫
1/n

1/2
≫≫

2

n
⟶ 0 as n → ∞

So the first term goes to zero, and the second (constant) term is the value of the limit. So the log
limit is ln 4

5
, and the limit (before taking logs) must be eln 4

5  (inverting the log using ex) and this is
4
5 . Since 4

5 < 1, the root test also shows that the series converges absolutely.
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