Calculus II - Lecture notes - W09

Positive series

01 Theory

□ Direct Comparison Test (DCT)

Applicability: Both series are positive: $a_n > 0$ and $b_n > 0$.

Test Statement: Suppose $a_n \leq b_n$ for large enough n.

(Meaning: for $n \ge N$ with some given N.) Then:

• Smaller pushes up bigger:

$$\sum_{n=1}^{\infty} a_n$$
 diverges \Longrightarrow $\sum_{n=1}^{\infty} b_n$ diverges

• Bigger controls smaller:

$$\sum_{n=1}^{\infty} b_n$$
 converges \Longrightarrow $\sum_{n=1}^{\infty} a_n$ converges

02 Illustration

: Example - Direct comparison test: rational functions

(a) The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \, 3^n}$ converges by the DCT.

Choose: $a_n = \frac{1}{\sqrt{n} \, 3^n}$ and $b_n = \frac{1}{3^n}$

Check: $0 < \frac{1}{\sqrt{n} 3^n} \leq \frac{1}{3^n}$

Observe: $\sum \frac{1}{3^n}$ is a convergent geometric series

(b) The series $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^3}$ converges by the DCT.

Choose: $a_n = \frac{\cos^2 n}{n^3}$ and $b_n = \frac{1}{n^3}$.

Check: $0 \le \frac{\cos^2 n}{n^3} \le \frac{1}{n^3}$

Observe: $\sum \frac{1}{n^3}$ is a convergent *p*-series

(c) The series $\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$ converges by the DCT.

Choose: $a_n = \frac{n}{n^3+1}$ and $b_n = \frac{1}{n^2}$

Check: $0 \le \frac{n}{n^3+1} \le \frac{1}{n^2}$ (notice that $\frac{n}{n^3+1} \le \frac{n}{n^3}$)

Observe: $\sum \frac{1}{n^2}$ is a convergent *p*-series

(d) The series $\sum_{n=2}^{\infty} \frac{1}{n-1}$ diverges by the DCT.

Choose: $a_n = \frac{1}{n}$ and $b_n = \frac{1}{n-1}$

Check: $0 \le \frac{1}{n} \le \frac{1}{n-1}$

Observe: $\sum \frac{1}{n}$ is a divergent *p*-series

03 Theory

Some series can be compared using the DCT after applying certain manipulations and tricks.

For example, consider the series $\sum_{n=2}^{\infty} \frac{1}{n^2-1}$. We suspect convergence because $a_n \approx \frac{1}{n^2}$ for *large n*. But unfortunately, $a_n > \frac{1}{n^2}$ always, so we cannot apply the DCT.

We could make some *ad hoc* arguments that do use the DCT, eventually:

- Trick Method 1:
 - Observe that for n > 1 we have $\frac{1}{n^2-1} \le \frac{10}{n^2}$. (Check it!)
 - But $\sum \frac{10}{n^2}$ converges, indeed its value is $10 \cdot \sum \frac{1}{n^2}$, which is $\frac{10\pi^2}{6}$.
 - So the series $\sum \frac{1}{n^2-1}$ converges.
- Trick Method 2:
 - Observe that we can change the letter n to n+1 by starting the new n at n=1.
 - Then we have:

$$\sum_{n=2}^{\infty} \frac{1}{n^2-1} \quad = \quad \sum_{n=1}^{\infty} \frac{1}{(n+1)^2-1} \quad = \quad \sum_{n=1}^{\infty} \frac{1}{n^2+2n}$$

• This last series has terms smaller than $\frac{1}{n^2}$ so the DCT with $b_n = \frac{1}{n^2}$ (a convergent *p*-series) shows that the original series converges too.

These convoluted arguments suggest that a more general version of Comparison is possible.

Indeed, it is sufficient to compare the *limiting behavior* of two series. The limit of *ratios* (limit of 'comparison') links up the convergence / divergence of $\sum a_n$ and $\sum b_n$.

Applicability: Both series are positive: $a_n > 0$ and $b_n > 0$.

Test Statement: Suppose that $\lim_{n\to\infty}\frac{a_n}{b_n}=L.$ Then:

• If $0 < L < \infty$:

$$\sum a_n$$
 converges \iff $\sum b_n$ converges

If L=0 or $L=\infty$, we can still draw an inference, but in only one direction:

• If L = 0:

$$\sum b_n$$
 converges \Longrightarrow $\sum a_n$ converges

• If $L = \infty$:

$$\sum b_n$$
 diverges \Longrightarrow $\sum a_n$ diverges

Extra - Limit Comparison Test: Theory

Suppose $a_n/b_n \to L$ and $0 < L < \infty$. Then for n sufficiently large, we know $a_n/b_n < L+1$.

Doing some algebra, we get $a_n < (L+1)b_n$ for n large.

If $\sum b_n$ converges, then $\sum (L+1)b_n$ also converges (constant multiple), and then the DCT implies that $\sum a_n$ converges.

Conversely: we also know that $b_n/a_n \to 1/L$, so $b_n < (1/L+1)a_n$ for all n sufficiently large. Thus if $\sum a_n$ converges, $\sum (1/L+1)a_n$ also converges, and by the DCT again $\sum b_n$ converges too.

The cases with L=0 or $L=\infty$ are handled similarly.

04 Illustration

\equiv Example - Limit Comparison Test examples

(a) The series $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ converges by the LCT.

Choose: $a_n = \frac{1}{2^n - 1}$ and $b_n = \frac{1}{2^n}$.

Compare in the limit:

$$\lim_{n o \infty} rac{a_n}{b_n} \quad \gg \gg \quad \lim_{n o \infty} rac{2^n}{2^n - 1} \quad \gg \gg \quad 1 \, =: \, L$$

Observe: $\sum \frac{1}{2^n}$ is a convergent geometric series

(b) The series $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ diverges by the LCT.

Choose: $a_n = \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$, $b_n = n^{-1/2}$

Compare in the limit:

$$\lim_{n o\infty}rac{a_n}{b_n} \quad >\!\!> \quad \lim_{n o\infty}rac{(2n^2+3n)\sqrt{n}}{\sqrt{5+n^5}}$$

$$rac{(2n^2+3n)\sqrt{n}}{\sqrt{5+n^5}} \quad \stackrel{n o\infty}{\longrightarrow} \quad rac{2n^{5/2}}{n^{5/2}} o 2 \;=:\; L$$

Observe: $\sum n^{-1/2}$ is a divergent *p*-series

(c) The series $\sum_{n=2}^{\infty} \frac{n^2}{n^4 - n - 1}$ converges by the LCT.

Choose: $a_n = \frac{n^2}{n^4 - n - 1}$ and $b_n = n^{-2}$

Compare in the limit:

$$\lim_{n\to\infty}\frac{a_n}{b_n}\quad \gg\gg\quad \lim_{n\to\infty}\frac{n^4}{n^4-n-1}\quad \gg\gg\quad 1\,=:\, L$$

Observe: $\sum_{n=2}^{\infty} n^{-2}$ is a converging *p*-series

Alternating series

Videos

Videos, Math Dr. Bob:

• Alternating Series Test: Theory and basic examples

• Alternating Series Test: Remainder estimates

• Alternating Series Test: Further remainder estimates

05 Theory

Consider these series:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \dots = \infty$$

$$-1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} - \frac{1}{5} - \frac{1}{6} - \frac{1}{7} - \dots = -\infty$$

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \dots = \ln 2$$

$$1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \dots = ?$$

The absolute values of terms are the same between these series, only the signs of terms change.

The first is a **positive series** because there are no negative terms.

The second series is the negation of a positive series – the study of such series is equivalent to that of positive series, just add a negative sign everywhere. These signs can be factored out of the series. (For example $\sum -\frac{1}{n} = -\sum \frac{1}{n}$.)

The third series is an **alternating series** because the signs alternate in a strict pattern, every other sign being negative.

The fourth series is *not* alternating, nor is it positive, nor negative: it has a mysterious or unknown pattern of signs.

A series with any negative signs present, call it $\sum_{n=1}^{\infty} a_n$, **converges absolutely** when the positive series of absolute values of terms, namely $\sum_{n=1}^{\infty} |a_n|$, converges.

THEOREM: Absolute implies ordinary

If a series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then it also converges as it stands.

A series might converge due to the presence of negative terms and yet not converge absolutely:

A series $\sum_{n=1}^{\infty} a_n$ is said to be **converge conditionally** when the series converges as it stands, but the series produced by inserting absolute values, namely $\sum_{n=1}^{\infty} |a_n|$, diverges.

The alternating harmonic series above, $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = \ln 2$, is therefore conditionally convergent. Let us see why it converges. We can group the terms to create new sequences of *pairs*, each pair being a positive term. This can be done in two ways. The first creates an increasing sequence, the second a decreasing sequence:

increasing from 0:
$$\left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{5} - \frac{1}{6}\right) + \left(\frac{1}{7} - \frac{1}{8}\right) + \cdots$$

decreasing from 1:
$$1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{6}-\frac{1}{7}\right)-\cdots$$

Suppose S_N gives the sequence of partial sums of the original series. Then S_{2N} gives the first sequence of pairs, namely S_2 , S_4 , S_6 , And S_{2N-1} gives the second sequence of pairs, namely S_1 , S_3 , S_5 ,

The second sequence shows that S_N is bounded above by 1, so S_{2N} is monotone increasing and bounded above, so it converges. Similarly S_{2N-1} is monotone decreasing and bounded below, so it converges too, and of course they must converge to the same thing.

The fact that the terms were *decreasing in magnitude* was an essential ingredient of the argument for convergence. This fact ensured that the parenthetical pairs were positive numbers.

⊞ Alternating Series Test (AST) - "Leibniz Test"

Applicability: Alternating series only: $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ with $a_n > 0$

Test Statement:

If:

- 1. a_n are *decreasing*, so $a_1 > a_2 > a_3 > a_4 > \cdots > 0$
- 2. $a_n \to 0$ as $n \to \infty$ (i.e. it passes the SDT)

Then:

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n \quad \text{converges}$$

Furthermore, partial sum *errors* are bounded by "subsequent terms":

$$|S-S_N| \leq a_{N+1}$$

Extra - Alternating Series Test: Theory

Just as for the alternating harmonic series, we can form *positive* paired-up series because the terms are decreasing:

$$(a_1-a_2)+(a_3-a_4)+(a_5-a_6)+\cdots$$

$$a_1 - (a_2 - a_3) - (a_4 - a_5) - (a_6 - a_7) - \cdots$$

The first sequence S_{2N} is monotone increasing from 0, and the second S_{2N-1} is decreasing from a_1 . The first is therefore also bounded above by a_1 . So it converges. Similarly, the second converges. Their difference at any point is $S_{2N} - S_{2N-1}$ which is equal to $-a_{2N}$, and this goes to zero. So the two sequences must converge to the same thing.

By considering these paired-up sequences and the effect of adding each new term one after the other, we obtain the following order relations:

$$0 < S_2 < S_4 < S_6 < \cdots < S < \cdots < S_5 < S_3 < S_1 = a_1$$

Thus, for any even 2N and any odd 2M - 1:

$$S_{2N} < S < S_{2M-1}$$

Now set M = N and subtract S_{2N-1} from both sides:

$$S_{2N} - S_{2N-1} < S - S_{2N-1} < 0$$

$$\gg \gg -a_{2N} < S - S_{2N-1} < 0$$

Now set M = N + 1 and subtract S_{2N} from both sides:

$$0 < S - S_{2N} < S_{2N+1} - S_{2N}$$

$$\gg \gg 0 < S - S_{2N} < a_{2N+1}$$

This covers both even cases (n = 2N) and odd cases (n = 2N - 1). In either case, we have:

$$|S - S_n| < a_{n+1}$$

06 Illustration

≔ Example - Alternating Series Test: Basic illustration

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$
 converges by the AST.

Notice that $\sum \frac{1}{\sqrt{n}}$ diverges as a *p*-series with p=1/2<1.

Therefore the first series converges *conditionally*.

(b)
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2}$$
 converges by the AST.

Notice the funny notation: $\cos n\pi = (-1)^n$.

This series converges *absolutely* because $\left|\frac{\cos n\pi}{n^2}\right| = \frac{1}{n^2}$, which is a *p*-series with p = 2 > 1.

\equiv Example - Approximating π

The Taylor series for $\tan^{-1} x$ is given by:

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Use this series to approximate π with an error less than 0.001.

Solution

(1) The main idea is to use $\tan \frac{\pi}{4} = 1$ and thus $\tan^{-1} 1 = \frac{\pi}{4}$. Therefore:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

and thus:

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \cdots$$

(2) Write E_n for the error of the approximation, meaning $E_n = S - S_n$.

By the AST error formula, we have $|E_n| < a_{n+1}$.

We desire n such that $|E_n| < 0.001$. Therefore, calculate n such that $a_{n+1} < 0.001$, and then we will know:

$$|E_n| < a_{n+1} < 0.001$$

(3) The general term is $a_n = \frac{4}{2n-1}$. Plug in n+1 in place of n to find $a_{n+1} = \frac{4}{2n+1}$. Now solve:

$$a_{n+1} = rac{4}{2n+1} < 0.001$$

$$\gg \gg \frac{4}{0.001} < 2n + 1$$

$$\gg \gg 3999 < 2n$$

$$\gg\gg$$
 $2000 \le n$

We conclude that at least 2000 terms are necessary to be confident (by the error formula) that the approximation of π is accurate to within 0.001.

Ratio test and Root test

Videos

Videos, Math Dr. Bob

• Ratio test: Basics

• Ratio test: Ratio test + DCT

• Root test: Basics

• Root test: for $\sum (1 - 1/n^2)^{n^3}$

07 Theory

B Ratio Test (RaT)

Applicability: Any series with nonzero terms.

Test Statement:

Suppose that $\left| \frac{a_{n+1}}{a_n} \right| \longrightarrow L \text{ as } n \to \infty.$

Then:

$$L < 1:$$
 $\sum_{n=1}^{\infty} a_n$ converges absolutely

$$L>1: \qquad \sum_{n=1}^{\infty} a_n \quad {
m diverges}$$

L = 1 or DNE: test inconclusive

Extra - Ratio test: explanation

To understand the ratio test, consider this series:

$$\sum_{n=0}^{\infty} \frac{2^n}{n!} = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \cdots$$

- The term $\frac{2^3}{3!}$ is given by multiplying the prior term by $\frac{2}{3}$.
- The term $\frac{2^4}{4!}$ is given by multiplying the prior term by $\frac{2}{4}$.
- The term a_n is created by multiplying the prior term by $\frac{2}{n}$.

When n > 3, the multiplication factor giving the next term is necessarily less than $\frac{2}{3}$. Therefore, when n > 3, the terms shrink faster than those of a geometric series having $r = \frac{2}{3}$. Therefore this series converges.

Similarly, consider this series:

$$\sum_{n=0}^{\infty} \frac{10^n}{n!} = 1 + \frac{10}{1!} + \frac{10^2}{2!} + \frac{10^3}{3!} + \cdots$$

Write $R_n = \frac{a_n}{a_{n-1}}$ for the ratio from the prior term a_{n-1} to the current term a_n . For this series, $R_n = \frac{10}{n}$.

This ratio falls below $\frac{10}{11}$ when n > 11, after which the terms necessarily shrink faster than those of a geometric series with $r = \frac{10}{11}$. Therefore this series converges.

The main point of the discussion can be stated like this:

$$R_n o L < 1 \quad ext{as} \ \ n o \infty$$

Whenever this is the case, then *eventually* the ratios are bounded below some r < 1, and the series terms are smaller than those of a converging geometric series.

Extra - Ratio test: proof

Let us write $R_n = \left| \frac{a_{n+1}}{a_n} \right|$ for the ratio to the next term from term n.

Suppose that $R_n \to L$ as $n \to \infty$, and that L < 1. This means: eventually the ratio of terms is close to L; so eventually it is less than 1.

More specifically, let us define $r = \frac{L+1}{2}$. This is the point halfway between L and 1. Since $R_n \to L$, we know that eventually $R_n < r$.

Any geometric series with ratio r converges. Set $c = a_N$ for N big enough that $R_N < r$. Then the terms of our series satisfy $|a_{N+n}| \le cr^n$, and the series starting from a_N is absolutely convergent by comparison to this geometric series.

(Note that the terms $a_1,\,\ldots,\,a_{N-1}$ do not affect convergence.)

08 Illustration

≡ Example - Ratio test

(a) Observe that $\sum_{n=0}^{\infty} \frac{10^n}{n!}$ has ratio $R_n = \frac{10}{n+1}$ and thus $R_n \to 0 = L < 1$. Therefore the RaT implies that this series converges.

Simplify the ratio:

$$egin{array}{c} rac{10^{n+1}}{(n+1)!} \ rac{n!}{10^n} \end{array} \gg \gg rac{(n+1)!}{10^{n+1}} \cdot rac{n!}{10^n}$$

$$\gg\gg \quad rac{10\cdot 10^n}{(n+1)n!}\cdot rac{n!}{10^n} \quad \gg\gg \quad rac{10}{n+1} \stackrel{n o\infty}{\longrightarrow} \ 0$$

Notice this technique! We *frequently* use these rules:

$$10^{n+1} = 10^n \cdot 10, \qquad (n+1)! = (n+1)n!$$

(To simplify ratios with exponents and factorials.)

(b)
$$\sum_{n=1}^{\infty}rac{n^2}{2^n}$$
 has ratio $R_n=rac{(n+1)^2}{2^{n+1}}\Big/rac{n^2}{2^n}.$

Simplify this:

$$\frac{(n+1)^2}{2^{n+1}} \Big/ \frac{n^2}{2^n} \qquad \gg \gg \qquad \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2}$$

$$\gg\gg \qquad rac{(n+1)^2\cdot 2^n}{n^2\cdot 2\cdot 2^n} \qquad \gg\gg \qquad rac{n^2+2n+1}{2n^2} \stackrel{n o\infty}{\longrightarrow} rac{1}{2}=L$$

So the series *converges absolutely* by the ratio test.

(c) Observe that
$$\sum_{n=1}^{\infty} n^2$$
 has ratio $R_n = \frac{n^2 + 2n + 1}{n^2} o 1$ as $n o \infty$.

So the ratio test is *inconclusive*, even though this series fails the SDT and obviously diverges.

(d) Observe that
$$\sum_{n=1}^{\infty} rac{1}{n^2}$$
 has ratio $R_n = rac{n^2}{n^2+2n+1} o 1$ as $n o \infty$.

So the ratio test is *inconclusive*, even though the series converges as a p-series with p = 2 > 1.

(e) More generally, the ratio test is usually *inconclusive for rational functions*; it is more effective to use LCT with a *p*-series.

09 Theory

⊕ Root Test (RooT)

Applicability: Any series.

Test Statement:

Suppose that $\sqrt[n]{|a_n|} \longrightarrow L$ as $n \to \infty$.

Then:

$$L < 1: \qquad \sum_{n=1}^{\infty} a_n \quad ext{converges absolutely}$$

$$L>1:$$
 $\sum_{n=1}^{\infty}a_{n}$ diverges

 $L=1 ext{ or DNE}:$ test inconclusive

Extra - Root test: explanation

The fact that $\sqrt[n]{|a_n|} \to L$ and L < 1 implies that eventually $\sqrt[n]{|a_n|} < r$ for all high enough n, where $r = \frac{L+1}{2}$ is the midpoint between L and 1.

Now, the equation $\sqrt[n]{|a_n|} < r$ is equivalent to the equation $|a_n| < r^n$.

Therefore, eventually the terms $|a_n|$ are each less than the corresponding terms of this convergent geometric series:

$$\sum_{n=1}^{\infty} r^n = 1 + r + r^2 + r^3 + \cdots$$

10 Illustration

≡ Example - Root test examples

(a) Observe that $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^n$ has roots of terms:

$$|a_n|^{1/n} = \left(\left(rac{1}{n}
ight)^n
ight)^{1/n} = rac{1}{n} \stackrel{n o\infty}{\longrightarrow} 0 = L$$

Because L < 1, the RooT shows that the series converges absolutely.

(b) Observe that $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n}{2n+1}\right)^n$ has roots of terms:

$$\sqrt[n]{|a_n|} = rac{n}{2n+1} \stackrel{n o\infty}{\longrightarrow} rac{1}{2} = L$$

Because L < 1, the RooT shows that the series converges absolutely.

(c) Observe that $\sum_{n=1}^{\infty} \left(\frac{3}{n}\right)^n$ converges because $\sqrt[n]{|a_n|} = \frac{3}{n} \to 0$ as $n \to \infty$.

\equiv Example - Ratio test versus root test

Determine whether the series $\sum_{n=1}^{\infty} \frac{n^2 4^n}{5^{n+2}}$ converges absolutely or conditionally or diverges.

Solution

Before proceeding, rewrite somewhat the general term as $\left(\frac{n}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^n$.

Now we solve the problem first using the ratio test. By plugging in n+1 we see that

$$a_{n+1} = \left(\frac{n+1}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^{n+1}$$

So for the ratio R_n we have:

$$\left(\frac{n+1}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^{n+1} \cdot \left(\frac{5}{n}\right)^2 \cdot \left(\frac{5}{4}\right)^n$$

$$\gg\gg \qquad rac{n^2+2n+1}{n^2}\cdotrac{4}{5}\longrightarrowrac{4}{5}<1 ext{ as } n o\infty$$

Therefore the series converges absolutely by the ratio test.

Now solve the problem again using the root test. We have for $\sqrt[n]{|a_n|}$:

$$\left(\left(\frac{n}{5}\right)^2\cdot\left(\frac{4}{5}\right)^n\right)^{1/n}=\left(\frac{n}{5}\right)^{2/n}\cdot\frac{4}{5}$$

To compute the limit as $n \to \infty$ we must use logarithmic limits and L'Hopital's Rule. So, first take the log:

$$\ln\left(\left(rac{n}{5}
ight)^{2/n}\cdotrac{4}{5}
ight)=rac{2}{n}\lnrac{n}{5}+\lnrac{4}{5}$$

Then for the first term apply L'Hopital's Rule:

$$rac{\ln rac{n}{5} \stackrel{d/dx}{\longrightarrow} rac{1}{n/5} \cdot rac{1}{5}}{n/2} \qquad \gg \gg \qquad rac{1/n}{1/2} \qquad \gg \gg \qquad rac{2}{n} \longrightarrow 0 ext{ as } n o \infty$$

So the first term goes to zero, and the second (constant) term is the value of the limit. So the log limit is $\ln\frac{4}{5}$, and the limit (before taking logs) must be $e^{\ln\frac{4}{5}}$ (inverting the log using e^x) and this is $\frac{4}{5}$. Since $\frac{4}{5} < 1$, the root test also shows that the series converges absolutely.