
Calculus II - Lecture notes - W10
Series tests: strategy tips

Videos

01 Theory

Videos, Math Dr. Bob

Videos, Trefor Bazett

Series test round-up: Part I
Series test round-up: Part II
Series test round-up: Part III

How to choose a series convergence test

It can help to associate certain “strategy tips” to find convergence tests based on certain patterns.

Matching powers → Simple Divergence Test
∞

∑
n=1

n − 1
2n + 1

Use the SDT because we see the highest power is the same (= 1) in numerator and denominator.

Rational or Algebraic → Limit Comparison Test

∞

∑
n=1

√n3 + 1

3n3 + 4n2 + 2

Use the LCT because we have a rational or algebraic function (positive terms).

Not rational, not factorials → Integral Test
∞

∑
n=1

ne−n2

Use the IT because we do not have a rational/algebraic function, and we do not see factorials.

Rational, alternating → AST, and LCT or DCT
∞

∑
n=1

(−1)n
n2

n4 + 1
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Power series: Radius and Interval

Videos

02 Theory

Use the AST because it’s alternating. Then use the LCT (to find absolute convergence) because its
a rational function.

Factorials → Ratio Test
∞

∑
n=1

2n

n!

Use the RaT because we see a factorial. (In case of alternating + factorial, use RaT first.)

Recognize geometric → LCT or DCT
∞

∑
n=1

1

2 + 3n

Use the LCT or DCT comparing to 1
3n  because we see similarity to 1

3n  (recognize geometric).

Videos, Math Dr. Bob

Power series: Interval and Radius of Convergence
Power series: Interval of Convergence Using Ratio Test

​ Further example
Power series: Interval of Convergence Using Root Test
Power series: Finding the Center

A power series looks like this:

f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯

Power series are used to build and study functions. They allow a uniform “modeling framework” in
which many functions can be described and compared. Power series are also convenient for computers
because they provide a way to store and evaluate differentiable functions with numerical (approximate)
values.

The idea of a power series is a modification of the idea of a geometric series in which the common ratio r
becomes a variable x, and each term has an additional coefficient parameter an controlling the relative

Small x needed for power series

The most important fact about power series is that they work for small values of x.

Many power series diverge for |x| too big; but even when they converge, for big |x| they converge
more slowly, and partial sum approximations are less accurate.
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03 Theory

contribution of different orders.

Every power series has a radius of convergence and an interval of convergence.

We can build shifted power series for x near some other value c. Just replace the variable x with a
shifted variable u = x − c:

Now apply the ratio test to determine convergence:

lim
n→∞

an+1|x − c|n+1

an|x − c|n
≫≫ ( lim

n→∞

an+1

an
)|x − c|

Define the radius of convergence R ∈ [0, ∞]:

R =
1

limn→∞
an+1

an

In the shifted setting, the radius of convergence limits the distance from :

Method:
To calculate the interval of convergence of a power series, follow these steps:

Radius of convergence

Consider a power series centered at x = 0:

f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯

Apply the ratio test:

lim
n→∞

an+1x
n+1

anxn
≫≫ ( lim

n→∞

an+1

an
)|x|

Define the radius of convergence R ∈ [0, ∞]:

R =
1

limn→∞
an+1

an

Therefore: ∣ ∣ ∣ ∣∣ ∣|x| < R ⟹ converges

|x| > R ⟹ diverges

a0 + a1u + a2u
2 + a3u

3 + ⋯

≫≫ a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + ⋯∣ ∣ ∣ ∣∣ ∣|x − c| < R ⟹ converges

|x − c| > R ⟹ diverges

Observe the center c of the shifted series (or c = 0 for no shift).
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04 Illustration

Compute R using the limit of coefficient ratios.
Write down the preliminary interval (c − R, c + R).
Plug each endpoint, c − R and c − R, into the original series

​ Check for convergence
Add in the convergent endpoints. (4 possible scenarios.)

Example - Radius of convergence

Find the radius of convergence of the series:

(a) 
∞

∑
n=0

xn

2n
  (b) 

∞

∑
n=0

x2n

(2n)!

Solution

(a) Ratio of terms:

xn+1

2n+1

xn

2n

≫≫
1/2n+1

1/2n
|x| ≫≫

1

2
|x|

Therefore R = 2 and the series converges for |x| < 2.

(b) This power series skips the odd powers. Apply the ratio test to just the even powers:∣ ∣x2n+2

(2n + 2)!

x2n

(2n)!

≫≫
(2n)!

(2n + 2)(2n + 1)(2n)!
|x2|

≫≫
1

(2n + 2)(2n + 1)
|x2|

≫≫ R = ∞∣ ∣Example - Interval of convergence

Find the radius and interval of convergence of the following series:

(a) 
∞

∑
n=1

(x − 3)n

n
  (b) 

∞

∑
n=0

(−3)nxn

√n + 1

Solution

(a) 
∞

∑
n=1

(x − 3)n

n

(1) Apply ratio test:
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(x − 3)n+1

n + 1
(x − 3)n

n

≫≫
n

n + 1
|x − 3|

Therefore R = 1 and thus:

Preliminary interval: x ∈ (2, 4).

(2) Check endpoints:

Check endpoint x = 2:

Check endpoint x = 4:

Final interval of convergence: x ∈ [2, 4)

(b) 
∞

∑
n=0

(−3)nxn

√n + 1

(1) Apply ratio test:

Therefore:

Preliminary interval: x ∈ (−
1

3
,

1

3
)

(2) Check endpoints:

∣ ∣|x − 3| < 1 ⟹ converges

|x − 3| > 1 ⟹ diverges

∞

∑
n=1

(2 − 3)n

n
≫≫

∞

∑
n=1

(−1)n

n

≫≫ converges by AST

∞

∑
n=1

(4 − 3)n

n
≫≫

∞

∑
n=1

1

n

≫≫ diverges as p-series

(−3)n+1xn+1

√n + 2

(−3)nxn

√n + 1

≫≫
|(−3)(−3)n|

√n + 2
⋅

√n + 1

|(−3)n|
|x|

≫≫
3√n + 1

√n + 2
|x|∣ ∣|x| <

1

3
⟹ converges

|x| >
1

3
⟹ diverges
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Check endpoint x = −1/3:

Check endpoint x = +1/3:

Final interval of convergence: x ∈ ( − 1/3, 1/3]

∞

∑
n=0

(−3 ⋅ (− 1
3
))n

√n + 1
≫≫

∞

∑
n=0

1

√n + 1

≫≫ diverges by LCT with bn = 1/√n

∞

∑
n=0

(−3 ⋅ (+ 1
3 ))

n

√n + 1
≫≫

∞

∑
n=0

(−1)n

√n + 1

≫≫ converges by AST

Exercise - Radius and interval

Find the radius and interval of convergence of the following series:

(a) 
∞

∑
n=0

xn  (b) 
∞

∑
n=0

n!xn

Interval of convergence - further examples

Find the interval of convergence of the following series.

(a) 
∞

∑
n=0

n(x + 2)n

3n+1
  (b) 

∞

∑
n=1

(4x + 1)n

n

Solution

(a) 
∞

∑
n=0

n(x + 2)n

3n+1

Ratio of terms:

n + 1

3n+2
⋅

3n+1

n
|x + 2| ≫≫

n + 1

3n
|x + 2|

Therefore R = 3 and the preliminary interval is x ∈ (−5, 1).

Check endpoints: ∑ n(−3)n

3n+1
 diverges and ∑ n(3)n

3n+1
 also diverges.

Final interval is (−5, 1).

(b) 
∞

∑
n=1

(4x + 1)n

n

Ratio of terms:
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Power series as functions

Videos

05 Theory

1
n + 1

1

n

|4x + 1| ≫≫
n

n + 1
|4x + 1|

Therefore:

Preliminary interval: x ∈ (0, 1/2)

Check endpoints: ∑
(4 ⋅ −1

2 + 1)n

n
 converges but ∑ 1

n
 diverges.

Final interval of convergence: [−1/2, 0)

|4x + 1| <1 ⟺ |x + 1/4| < 1/4 ⟹ converges

 |4x + 1| >1 ⟺ |x + 1/4| > 1/4 ⟹ diverges

Videos, Math Dr. Bob

Power series functions: Derivative/Antiderivative - Basics
Power series functions: Derivative/Antiderivative - Interval of Convergence
Power series functions: Derivative/Antiderivative - More examples
Power series functions: Geometric Power Series

Given a numerical value for x within the interval of convergence of a power series, the series sum may
be considered as the output f(x) of a function f.

Many techniques from algebra and calculus can be applied to such power series functions.

Addition and Subtraction:

Summation notation:
∞

∑
n=0

anx
n +

∞

∑
n=0

bnx
n =

∞

∑
n=0

(an + bn)xn

Scaling:

cf = ca0 + (ca1)x + (ca2)x2 + ⋯

Summation notation:

c

∞

∑
n=0

anx
n =

∞

∑
n=0

(can)xn

f = a0 + a1x + a2x
2 + a3x

3 + ⋯

g = b0 + b1x + b2x
2 + b3x

3 + ⋯

f + g = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + ⋯
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Assume:

f = a0 + a1x + a2x
2 + a3x

3 + ⋯ =
∞

∑
n=0

anx
n

Then:

Differentiation:

df

dx
= a1 + (2a2)x + (3a3)x2 + ⋯ =

∞

∑
n=1

nanx
n−1

Antidifferentiation:

∫ f(x) dx = C + a0x +
a1

2
x2 +

a2

3
x3 + ⋯ = C +

∞

∑
n=0

an

n + 1
xn+1

For example, for the geometric series we have:

Do the series created with sums, products, derivatives etc., all converge? On what interval?

For the algebraic operations, the resulting power series will converge wherever both of the original
series converge.

Extra - Multiplication and composition

Multiplication:

For example, suppose that the geometric power series f(x) = 1 + x + x2 + x3 + ⋯ converges, so
|x| < 1. Then we have for its square:

Composition:

f ⋅ g = (a0 + a1x + a2x
2 + ⋯) ⋅ (b0 + b1x + b2x

2 + ⋯)

= a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + ⋯

f ⋅ f = f(x)2 = (1 + x + x2 + ⋯) ⋅ (1 + x + x2 + ⋯)

= 1 + (1 + 1)x + (1 + 1 + 1)x2 + ⋯

= 1 + 2x + 3x2 + 4x3 + ⋯

=
∞

∑
n=0

(n + 1)xn

f(−x) = 1 − x + x2 − x3 + x4 − ⋯

f(2x3) = 1 + 2x3 + (2x3)2 + ⋯

= 1 + 2x3 + 4x6 + 8x9 + ⋯

f = 1 + x + x2 + x3 + x4 + ⋯

df

dx
= 1 + 2x + 3x2 + 4x3 + 5x4 + ⋯

∫ f dx = C + x +
1

2
x2 +

1

3
x3 +

1

4
x4 + ⋯
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06 Illustration

For calculus operations, the radius is preserved, but the endpoints are not necessarily:

Power series calculus - Radius preserved

If the power series f(x) has radius of convergence R, then the power series f ′(x) and ∫ f dx also
have the same radius of convergence R.

Power series calculus - Endpoints not preserved

It is possible that a power series f(x) converges at and endpoint a of its interval of convergence, yet
f ′ and ∫ f dx do not converge at a.

Extra - Proof of radius for derivative and integral series

Suppose f(x) has radius of convergence R:

an+1

an
⋅ |x|⟶

1

R
⋅ |x|  as  n → ∞

Consider now the derivative f ′ and its ratios of successive terms:

(n + 1)an+1x
n

nanxn−1
= ( n + 1

n
) ⋅

an+1

an
⋅ |x|

n→∞
⟶ 1 ⋅

1

R
⋅ |x| =

1

R
⋅ |x|

Consider instead the antiderivative ∫ f dx and its ratios of successive terms:

( 1
n+1

)anxn+1

( 1
n
)an−1xn

= ( n

n + 1
) ⋅

an

an−1
⋅ |x|

n→∞
⟶ 1 ⋅

1

R
⋅ |x| =

1

R
⋅ |x|

In both these cases the ratio test provides that the series converges when |x| < R.∣ ∣∣ ∣ ∣ ∣∣ ∣ ∣ ∣Example - Geometric series: algebra meets calculus

Consider the geometric series as a power series functions:

1

1 − x
= 1 + x + x2 + x3 + ⋯

Take the derivative of both sides of the function:

d

dx
( 1

1 − x
) ≫≫

1

(1 − x)2
≫≫ ( 1

1 − x
)

2

This means f satisfies the identity:

f ′ = f 2

Now compute the derivative of the series:

1 + x + x2 + x3 + ⋯
d
dx

≫≫ 1 + 2x + 3x2 + 4x3 + ⋯

On the other hand, compute the square of the series:

(1 + x + x2 + x3 + ⋯ )
2

≫≫ 1 + 2x + 3x2 + 4x3 + ⋯
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So we find that the same relationship holds, namely f ′ = f 2, for the closed formula and the series
formula for this function.

Example - Manipulating geometric series: algebra

Find power series that represent the following functions:

(a) 1

1 + x
  (b) 1

1 + x2
  (c) x3

x + 2
  (d) 3x

2 − 5x

Solution

(a) 1

1 + x

(1) Rewrite in format 1
1−u .

Introduce double negative:

1

1 + x
=

1

1 − (−x)

Choose u = −x.

(2) Plug u = −x into geometric series.

Geometric series in u:

1 + u + u2 + u3 + ⋯

(3) Plug in u = −x:

≫≫ 1 + (−x) + (−x)2 + (−x)3 + ⋯

(4) Simplify:

≫≫ 1 − x + x2 − x3 + ⋯

(5) Final answer:

1

1 + x
= 1 − x + x2 − x3 + ⋯

(b) 1

1 + x2

(1) Rewrite in format 1
1−u .

Rewrite:
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1

1 + x2
=

1

1 − (−x2)

Choose u = −x2.

(2) Plug u = −x2 into geometric series.

Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = −x2:

(3) Final answer:

1

1 + x
= 1 − x2 + x4 − x6 + ⋯

(c) x3

x + 2

(1) Rewrite in format Ax3 ⋅ 1
1−u .

Rewrite:

Choose u = − x
2

. Here Ax3 = 1
2
x3.

(2) Plug u = −x2 into geometric series.

Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = − x
2 :

Obtain:

1

1 − (− x
2 )

= 1 −
1

2
x +

1

4
x2 −

1

8
x3 + ⋯

≫≫ 1 + (−x2) + (−x2)2 + (−x2)3 + ⋯

≫≫ 1 − x2 + x4 − x6 + ⋯

x3

x + 2
≫≫ x3 ⋅

1

2 + x
≫≫ x3 ⋅

1

2 (1 + x
2 )

≫≫
1

2
x3 ⋅

1

1 + x
2

≫≫
1

2
x3 ⋅

1

1 − (− x
2 )

≫≫ 1 + (− x
2

) + (− x
2

)2 + (− x
2

)3 + ⋯

≫≫ 1 −
1

2
x +

1

4
x2 −

1

8
x3 + ⋯
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(3) Multiply by 1
2 x

3.

Distribute:

1

2
x3 ⋅

1

1 − (− x
2 )

≫≫
1

2
x3 −

1

4
x4 +

1

8
x5 −

1

16
x6 + ⋯

Final answer:

x3

x + 2
=

1

2
x3 −

1

4
x4 +

1

8
x5 −

1

16
x6 + ⋯

(d) 3x

2 − 5x

(1) Rewrite in format Ax ⋅ 1
1−u .

Rewrite:

Choose u = 5x
2 . Here Ax = 3

2 x.

(2) Plug u = 5x
2  into geometric series.

Geometric series in u:

1 + u + u2 + u3 + ⋯

Plug in u = 5x
2 :

Obtain:

1

1 − 5x
2

= 1 +
5

2
x +

25

4
x2 +

125

8
x3 + ⋯

(3) Multiply by 3
2
x.

Distribute:

3

2
x ⋅

1

1 − 5x
2

≫≫
3

2
x +

15

4
x2 +

75

8
x3 +

375

16
x4 + ⋯

Final answer:

3x

2 − 5x
=

3

2
x +

15

4
x2 +

75

8
x3 +

375

16
x4 + ⋯

3x

2 − 5x
≫≫ 3x ⋅

1

2 − 5x

≫≫ 3x ⋅
1

2 (1 − 5x
2 )

≫≫
3

2
x ⋅

1

1 − 5x
2

≫≫ 1 + ( 5x
2

) + ( 5x
2

)2 + ( 5x
2

)3 + ⋯

≫≫ 1 +
5

2
x +

25

4
x2 +

125

8
x3 + ⋯
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Example - Manipulating geometric series: calculus

Find a power series that represents ln(1 + x).

Solution

(1) Differentiate to obtain similarity to geometric sum formula.

Differentiate ln(1 + x):

d

dx
ln(1 + x) =

1

1 + x
≫≫

1

1 − (−x)

(2) Find power series of differentiated function.

Power series by modifying 1
1−u  with u = −x:

1

1 − (−x)
= 1 − x + x2 − x3 + x4 − ⋯

(3) Integrate series to find original function.

Integrate both sides:

Use known point to solve for D:

ln(1 + 0) = D + 0 + 0 + ⋯ ≫≫ 0 = D

Final answer:

ln(1 + x) = x −
1

2
x2 +

1

3
x3 −

1

4
x4 + ⋯

∫ 1

1 − (−x)
dx = ∫ 1 − x + x2 − x3 + x4 − ⋯ dx

ln(1 + x) = D + x −
1
2
x2 +

1
3
x3 −

1
4
x4 + ⋯

Example - Recognizing and manipulating geometric series: Part I

(a) Evaluate 
∞

∑
n=1

(−1)n−1 1

n
.

(Hint: consider the series of ln(1 − x).)

(b) Find a series approximation for ln(2/3).

Solution

(a)

(1) We know the series of −1
1−x

:

−1

1 − x
= −(1 + x + x2 + ⋯) = −1 − x − x2 − ⋯
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Notice that ∫ −1
1−x dx = ln(1 − x) + C; this is the desired function when C = 0.

Integrate the series term-by-term:

Solve for D using ln(1 − 0) = 0, so 0 = D − 0 − 0 − ⋯ and thus D = 0. So:

ln(1 − x) = −x −
x2

2
−

x3

3
− ⋯ =

∞

∑
n=1

−
xn

n!

(2) Notice the formula:

The series formula ∑∞
n=1 − xn

n!  looks similar to the formula ∑∞
n=1(−1)n−1 1

n .

(3) Choose x = −1 to recreate the desired series:

We obtain equality by setting x = −1 because −(−1)n = (−1)n+1 = (−1)n−1.

Final answer is ln(1 − −1) = ln 2.

(b)

Find a series approximation for ln(2/3):

(1) Observe that ln(2/3) = ln(1 − 1/3).

Therefore we can use the series ln(1 − x) = −x − x2

2
− x3

3
− ⋯

(2) Plug x = 1/3 into the series for ln(1 − x).

Plug in and simplify:

∫ −1

1 − x
dx = ∫ −1 − x − x2 − ⋯ dx

≫≫ ln(1 − x) = D − x −
x2

2
−

x3

3
− ⋯

ln(2/3) = ln(1 − 1/3) = −1/3 −
(1/3)2

2
−

(1/3)3

3
− ⋯

= −
1

3
−

1

32 ⋅ 2
−

1

33 ⋅ 3
− ⋯

Example - Recognizing and manipulating geometric series: Part II

(a) Find a series representing tan−1(x) using differentiation.

(b) Find a series representing ∫ dx

1 + x4
.

Solution
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(a)

(1) Notice that d
dx tan−1(x) = 1

1+x2 .

Obtain the series for 1
1+x2 .

Let u = −x2:

(2) Integrate the series for 1
1+x2  by terms.

Set up the strategy. We know:

∫ 1

1 + x2
dx = tan−1(x) + C

and:

1

1 + x2
= 1 − x2 + x4 − x6 + x8 − ⋯

Integrate the series term-by-term:

Conclude:

tan−1(x) + C = D + x −
x3

3
+

x5

5
−

x7

7
+ ⋯

(3) Solve for D − C by testing at tan−1(0) = 0.

Plug in:

Final answer: tan−1(x) = x − x3

3
+ x5

5
− x7

7
+ ⋯

(b)

(1) Find a series representing the integrand.

Integrand is 1

1 + x4
.

Rewrite integrand in format of geometric series sum:

1

1 + x2
≫≫

1

1 − u
= 1 + u + u2 + ⋯

≫≫ 1 − x2 + x4 − x6 + x8 − ⋯

≫≫ ∫ 1 − x2 + x4 − x6 + x8 − ⋯ dx

≫≫ D + x −
x3

3
+

x5

5
−

x7

7
+ ⋯

tan−1(0) = D − C + 0 + ⋯ + 0

≫≫ D − C = 0
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1

1 + x4
≫≫

1

1 − (−x4)
≫≫

1

1 − u
, u = −x4

Write the series:

(2) Integrate the series by terms:

∫ 1 − x4 + x8 − x12 + x16 − ⋯ dx ≫≫ C + x −
x5

5
+

x9

9
−

x13

13
+

x17

17
− ⋯

1

1 − u
= 1 + u + u2 + u3 + ⋯

≫≫ 1 − x4 + x8 − x12 + x16 − ⋯ =
∞

∑
n=0

(−1)nx4n
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