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Taylor and Maclaurin series

Videos

Videos, Math Dr. Bob

1
z)?

Maclaurin series: f(z) = =
= e®

Maclaurin series: f(z
Maclaurin series: f(z) = sinz, cosz, tanz

Taylor series: f(z) =lnzatz =1
01 Theory

Suppose that we have a power series function:
f(z) = ag + a1z + axx® + azz® + - -

Consider the successive derivatives of f:

fle) = a + aiz + aszr® + asz® + asz® +
fll®) = 0 4+ a1 + 2-ax! + 3-aszx® + 4-az® +
f"z) = 0 + 0 + 2-ay + 3-2-a3z' + 4-3-a422 +
() = + 0 + 0 + 3-2-1-a3 + 4-3-2-a4z' +
fM@) = 0 + 0 + 0 + 0 + --+nloa, +

When these functions are evaluated at z = 0, all terms with a positive z-power become zero:

f(0) = ap = ap
f(0) = a = ay
f”(O) - 2. as = 2. as
f’”(O) — 3-2-a3 = 3l-a3

™) = n-(n—-1)---2-1-a, = nl-a,

This last formula is the basis for Taylor and Maclaurin series:

Power series: Derivative-Coefficient Identity
f(")(O) = nl-a,

This identity holds for a power series function f(z) = a¢ + a1z + asz® + asz® + - - - which has a
nonzero radius of convergence.

We can apply the identity in both directions:

Know f(z)? ~» Calculate a, for any n.

Know a,? ~» Calculate f™(0) for any n.
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Many functions can be ‘expressed’ or ‘represented’ near z = ¢ (i.e. for small enough |z — ¢|) as convergent

power series. (This is true for almost all the functions encountered in pre-calculus and calculus.)

Such a power series representation is called a Taylor series.
When ¢ = 0, the Taylor series is also called the Maclaurin series.
One power series representation we have already studied:

1
1—2

= l+z+z+23+--

Whenever a function has a power series (Taylor or Maclaurin), the Derivative-Coefficient Identity may be
applied to calculate the coefficients of that series.

Conversely, sometimes a series can be interpreted as an evaluated power series coming from z = ¢ for
some c. If the closed form function format can be obtained for this power series, the total sum of the

original series may be discovered by putting z = ¢ in the argument of the function.

:= Example - Maclaurin series of e”

What is the Maclaurin series of f(z) = e*?

Solution

Because diez = €%, we find that £ (z) = e® for all n.
z

1
So f™(0) = €° = 1 for all n. Therefore a,, = o for all n by the Derivative-Coefficient identity.

Thus:
2 3 o] n
- T T T 3 T
€ ! 1! 2! 3! Zo n!
=

‘= Example - Maclaurin series of cosz

Find the Maclaurin series representation of cos z.
Solution

Use the Derivative-Coefficient Identity to solve for the coefficients:

F™(0)
T, = =
n!
n [ ][ £90) | a
0 cos T 1 1
1 —sinz 0 0
2 —cosz 1| -1/2
3 sinz 0 0
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no | fP@) | fM0) | an
1/24

[y

cos T

5 —sinz 0 0

By studying the generating pattern of the coefficients, we find for the series:

1172 134 wﬁ 0 " 2132”
cost = oot e " 7;(_1) 2n)!

‘= Maclaurin series from other Maclaurin series

(a) Find the Maclaurin series of sin z using the Maclaurin series of cos z.
(b) Find the Maclaurin series of f(x) = z2e~5* using the Maclaurin series of e®.

(c) Using (b), find the value of f@(0).

Solution
(a)

Z Remember that Lcosz = —sinz
Differentiate cosz = 1 — 3—? + Z—? = ’é—? + ..

Differentiate term-by-term:

2 4 6 1 3 5

xr xr X x xr

B 1 43 45

S TR TR
Take negative because sinz = f%cos z:

.’L‘3 $5 $7
>> w_§+ﬁ_7+.'.
Final answer is sinz = 2 — g—? + ”gf’ —
(V)
@)
2 Recall the series e* =1 + ‘{—:+3—f+’§—f+
Compute the series for e 5%,
Set u = —5z:
ul w2 ol
it o o g
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(2) Compute the product.

Product of series:

2 5z 2 (—52) (=5z)? (=5z)3
T e >> <1+ 1 4+ o1 30
25 125
> x2—5:r:3+2 4—?5+-~

o) 5n n+2

(©
@

{\ Derivatives at z = 0 are calculable from series coefficients.

Suppose we know the series f(z) = ag + a1z + asz? + azz3 + - - -
Then f™(0) = n! - a,.

It may be easier to compute a, for a given f(z) than to compute the derivative functions f™(zx) and
then evaluate them.

(2) Compute ag,.

Write the series such that it reveals the coefficients:

e8] 5".’1)"+2 x 5N g
SepfE? s S (B

n=0 . n=0

5"
= Qni2 = (‘U”E

/ Coefficient with a, > corresponds to the term with z"2, not necessarily the (n + 2)™

term (e.g. if the first term is z? as here).

Compute ay,:

— (_1)205_20 > 520L
e = 20! 20!
(3) Compute f22)(0).
Use Derivative-Coefficient Identity:
F®0) = 22! -ayn

20!
>> 520'2—0' >>  5%0.22.21
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‘= Computing a Taylor series

Find the first five terms of the Taylor series of f(z) = v/« + 1 centered at c = 3.
Solution
A Taylor series is just a Maclaurin series that isn’t centered at ¢ = 0.
The general format looks like this:

f(x) =ap+ai(x —c) +az(z —c)* +as(x —c)® + - -
The coefficients satisfy a,, = % (Notice the c.)

We find the coefficients by computing the derivatives and evaluating at z = 3:

@) = (@ +1)", f8) =2
F(z) = % z+1)712 F3) = %
Fomtern et
f(z) = g(-’f +1)7%%, 1) = %

F9@) =~ 1@ = g

By dividing by n! we can write out the first terms of the series:
fle) = Va+1

1 1 , 1 s 5
— 294 —(£—3)— —(z— — (z—3)3—
M Gk i Gt T A G i T Ty

(@—3) +--

A Study these!

Memorize all of these series!
Recognize all of these series!

Recognize all of these summation formulas!

1 [o0)
m:1+z+x2+-.- = Zx", R=1, interval: (—1,1)
n=0
m2 1133 o8] mn-f—l .
1n(1_m):___7_?_... = ;_n—l-l’ R =1, interval: [-1,1)
3 5 o) 2n+1
z z z
tanlz—z_ T LT _ 1" Z— R=1, interval: [-1,1
an " x =2 3+5 ;( )2n+1’ R=1, interval: [-1,1]
2 ) n
sy T L - r _
¢ =147+ 5 + = Zo"!’ R=c0
pry
z2 ozt = zn
cosz =1— + — = -1)"——, R=o0
2l ' 4l ;( ) (2n)!’
3 5 0 2n+1
z z z
NE =2 — = 4 —— 4. - ~1)'——— R=
sinz =z 3!+5!+ ;( )(2n+1)! 0
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Applications of Taylor series

Videos, Math Dr. Bob

Approximating with Maclaurin polynomials: f(z) = In(1 — z) to find In(1.1)

Linear approximation is the technique of approximating a specific value of a function, say f(z1), at a
point z; that is close to another point zy where we know the exact value f(zo). We write Az for z1 — zo,
and yo = f(z0), and y1 = f(z1). Then we write dy = f'(z¢) - Az and use the fact that:

Y1~ yo+dy=yo+ f'(x0) - Az

‘= Computing a linear approximation

For example, to approximate the value of v/4.01, set f(z) = 1/z, set zo = 4 and yo = 2, and set
z1 = 4.01 so Az = 0.01.

Then compute: f'(z) =
So f'(zo) = 1/4.

1
2z

Finally:

1
y1 = Yo+ f'(zg) - Az >> Y1 =2+ T 0.01 = 2.0025

Now recall the linearization of a function, which is itself another function:

Given a function f(z), the linearization L(z) at the basepoint « = cis:
L(z) = f(c) + f'(e)(z — ¢)
The graph of this linearization L(z) is the tangent line to the curve y = f(z) at the point (¢, f(c)).

The linearization L(z) may be used as a replacement for f(z) for values of z near c. The closer z is to c,

the more accurate the approximation L(z) is for f(z).
‘= Computing a linearization
We set f(z) = /z, and we let c = 4.
We compute f(c) =2, and f'(z) = ﬁ so f'(c) = +.
Plug everything in to find L(z):

L@)=f@+f@e—d >> L@)=2+5@-4

Now approximate f(4.01) ~ L(4.01):

6/10


af://h2-13
af://h3-14
https://www.youtube.com/watch?v=7_5yc4IIcbw
https://www.youtube.com/watch?v=8jXynT202wg
af://h3-16

Calculus Il - Lecture notes - W11

L(4.01) =2 + %(4.01 — 4) = 2.0025

The Taylor polynomials T),(z) of a function f(z) are the partial sums of the Taylor series of f(z):

N (n) c
Tn(e) =3 1D @ — o = f(0) +
n=0

n!

These polynomials are generalizations of linearization.
Specifically, f(c) = To(z), and L(z) = Ti(x).

The Taylor series Ty, (z) is a better approximation of f(z) than T;(z) for any ¢ < n.

y y=et

~N
Y=T,0)
y=T,w
5
y=T,)
X
— | 1
Yy Yy y
Ty Ty(x)
N - N - T~ N -~ S -~
/\\—71/\,7//\\‘/\771 AR s /AR

<
om o~ N o o N \.. 27 2 2N
f(x) = cos x
Ty(x)

Ty(x)
0N - LN SN\ x|/ P T N
. x x
o S o 2 V[ 2 ~27) 2
To(x) T

The series T, (z) has the same derivatives as f(z) at the point z = c. This fact can be verified by

visual inspection of the series: apply the power rule and chain rule, then plug in z = ¢ and all factors

left with (z — ¢) will become zero.

The difference f(z) — T),(z) vanishes to order n at z = c:

F®™(c) N Fo+D () -
f(@) —To(z) = — (z —c) +m(x_c) T
o F) | F™()
= (z—¢) ( " L T 1) (€ —c)+--- )

The factor (z — ¢)™ drives the whole function to zero with order n as z — c.

If we only considered orders up to n, we might say that f(z) and T}, (z) are the same near c.
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06 Illustration

‘= Taylor polynomial approximations

Let f(z) = sinz and let T},(z) be the Taylor polynomials expanded around ¢ = 0.

By considering the alternating series error bound, find the first n for which 7,,(0.02) must have error
less than 1075,

Solution
(1) Write the Maclaurin series of sin z because we are expanding around ¢ = 0.

Alternating sign, odd function:

@

/\ Notice this series is alternating, so AST error bound formula applies.

AST error bound formula is:
|En| S Ani1

Here the seriesis S =ag—a; +ay —as+--- and E, = S — S, is the error.

/ Notice that z = 0.02 is part of the terms q; in this formula.

(3) Implement error bound to set up equation for n.

Find n such that a,,; < 107%, and therefore by the AST error bound formula:
Bl < @ppq <107°

Plug in z = 0.02.

From the series of sin z we obtain for as,;:

0'022n+1
a2n+1 = m

We seek the first time it happens that a,,.; < 1075.

(4) Solve for the first time ay,; < 1075,

Equations to solve:

0_022n+1 . 0_022(n—1)+1
— <10~ but: ——————— £10°°
@n+1) = Y Rm -1+ £

Method: list the values:

8/10


af://h3-20

Calculus Il - Lecture notes - W11

~1.33x10°°

0.02! 0.023
= 0.02, =

0.02°
5!

~ 2.67 x 10711,

The first time agny1 is below 10~¢ happens when 2n + 1 = 5.

(5) Interpret result and state the answer.

2n+1

When 2n + 1 = 5, the term ratz= 0.02 is less than 1075,

(@n+1)!
Therefore the sum of prior terms is accurate to an error of less than 1076.
The sum of prior terms equals T4(0.02).

Since T4(z) = T3(x) because there is no z* term, the same sum is 75(0.02).

The final answer is n = 3.

Z It would be wrong to infer at the beginning that the answer is 5, or to solve
2n+1=>5to getn = 2.

‘= Taylor polynomials to approximate a definite integral

0.3
Approximate / e~ dz using a Taylor polynomial with an error no greater than 10~°.
0

Solution

(1) Write the series of the integrand.

Plug u = —z? into the series of e*:
@ _ 1 u U2
e = + 1' + ? +
>> e ? *l—lmz—i-ix‘l——zﬁ—i-
N 2! 4! 6!

(2) Compute definite integral by terms.

Antiderivative by terms:
1 1 1
2 4 6
/l—am -I-Ix ~5® +---dz

1 3,15 14
>> :cfgx +ax7ﬁm SFooo

Plug in bounds for definite integral:
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/0'3 g S>> Lo Bp Lo, 0
e D B = —a3 — = = ce
o 3! 5! 7! 0
0.32 03° 0.3
S TR R
(3) Notice AST, apply error formula.
Compute some terms:
0.3% 0.3° g 0.37 @
So we can guarantee an error less than 4.34 x 10~° by summing the first terms through %
3 5
Final answer is 0.3 — % + % ~ 0.291243.
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