
Calculus II - Lecture notes - W11
Taylor and Maclaurin series

Videos

01 Theory

Videos, Math Dr. Bob

Maclaurin series: f(x) = 1
(1−x)2

Maclaurin series: f(x) = ex

Maclaurin series: f(x) = sinx, cosx, tanx

Taylor series: f(x) = lnx at x = 1

Suppose that we have a power series function:

f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯

Consider the successive derivatives of f:

When these functions are evaluated at x = 0, all terms with a positive x-power become zero:

This last formula is the basis for Taylor and Maclaurin series:

We can apply the identity in both directions:

f(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + ⋯

f ′(x) = 0 + a1 + 2 ⋅ a2x
1 + 3 ⋅ a3x

2 + 4 ⋅ a4x
3 + ⋯

f ′′(x) = 0 + 0 + 2 ⋅ a2 + 3 ⋅ 2 ⋅ a3x
1 + 4 ⋅ 3 ⋅ a4x

2 + ⋯

f ′′′(x) = 0 + 0 + 0 + 3 ⋅ 2 ⋅ 1 ⋅ a3 + 4 ⋅ 3 ⋅ 2 ⋅ a4x
1 + …

⋮ ⋮ ⋮ ⋮

f (n)(x) = 0 + 0 + 0 + 0 + ⋯ + n! ⋅ an + ⋯

f(0) = a0 = a0

f ′(0) = a1 = a1

f ′′(0) = 2 ⋅ a2 = 2! ⋅ a2

f ′′′(0) = 3 ⋅ 2 ⋅ a3 = 3! ⋅ a3

⋮ = ⋮ = ⋮

f (n)(0) = n ⋅ (n − 1) ⋯ 2 ⋅ 1 ⋅ an = n! ⋅ an

Power series: Derivative-Coefficient Identity

f (n)(0) = n! ⋅ an

This identity holds for a power series function f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯ which has a
nonzero radius of convergence.

Know f(x)? ⇝  Calculate an for any n.
Know an? ⇝  Calculate f (n)(0) for any n.
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02 Illustration

Many functions can be ‘expressed’ or ‘represented’ near x = c (i.e. for small enough |x − c|) as convergent
power series. (This is true for almost all the functions encountered in pre-calculus and calculus.)

Such a power series representation is called a Taylor series.
When c = 0, the Taylor series is also called the Maclaurin series.

One power series representation we have already studied:

1
1 − x

= 1 + x + x2 + x3 + ⋯

Whenever a function has a power series (Taylor or Maclaurin), the Derivative-Coefficient Identity may be
applied to calculate the coefficients of that series.

Conversely, sometimes a series can be interpreted as an evaluated power series coming from x = c for
some c. If the closed form function format can be obtained for this power series, the total sum of the
original series may be discovered by putting x = c in the argument of the function.

Example - Maclaurin series of ex

What is the Maclaurin series of f(x) = ex?

Solution

Because d

dx
ex = ex, we find that f (n)(x) = ex for all n.

So f (n)(0) = e0 = 1 for all n. Therefore an =
1
n!

 for all n by the Derivative-Coefficient identity.

Thus:

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ⋯ =

∞

∑
n=0

xn

n!

Example - Maclaurin series of cos x

Find the Maclaurin series representation of cosx.

Solution

Use the Derivative-Coefficient Identity to solve for the coefficients:

an =
f (n)(0)
n!

n f (n)(x) f (n)(0) an

0 cosx 1 1

1 − sinx 0 0

2 − cosx −1 −1/2

3 sinx 0 0
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n f (n)(x) f (n)(0) an

4 cosx 1 1/24

5 − sinx 0 0

⋮ ⋮ ⋮ ⋮

By studying the generating pattern of the coefficients, we find for the series:

cosx = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n

(2n)!

Maclaurin series from other Maclaurin series

(a) Find the Maclaurin series of sinx using the Maclaurin series of cosx.

(b) Find the Maclaurin series of f(x) = x2e−5x using the Maclaurin series of ex.

(c) Using (b), find the value of f (22)(0).

Solution

(a)

Differentiate cosx = 1 − x2

2! + x4

4! − x6

6! + ⋯

Differentiate term-by-term:

Take negative because sinx = − d
dx cosx:

≫≫ x −
x3

3!
+

x5

5!
−

x7

7!
+ ⋯

Final answer is sinx = x − x3

3! + x5

5! − ⋯

(b)

(1)

Compute the series for e−5x.

Set u = −5x:

Remember that d

dx
cosx = − sinx

1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ ≫≫ 0 − 2

x1

2!
+ 4

x3

4!
− 6

x5

6!
+ ⋯

= −
x1

1!
+

x3

3!
−

x5

5!
− ⋯

Recall the series eu = 1 + u
1

1!
+ u

2

2!
+ u

3

3!
+ ⋯

1 +
u1

1!
+

u2

2!
+

u3

3!
+ ⋯

≫≫ 1 +
(−5x)

1!
+

(−5x)2

2!
+

(−5x)3

3!
+ ⋯
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(2) Compute the product.

Product of series:

(c)

(1)

Suppose we know the series f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯

Then f (n)(0) = n! ⋅ an.

It may be easier to compute an for a given f(x) than to compute the derivative functions f (n)(x) and
then evaluate them.

(2) Compute a22.

Write the series such that it reveals the coefficients:

Compute a22:

a22 = (−1)20 520

20!
≫≫ 520 1

20!

(3) Compute f (22)(0).

Use Derivative-Coefficient Identity:

x2e−5x ≫≫ x2 (1 +
(−5x)

1!
+

(−5x)2

2!
+

(−5x)3

3!
+ ⋯)

≫≫ x2 − 5x3 +
25
2
x4 −

125
3!

x5 + ⋯

≫≫
∞

∑
n=0

(−1)n
5nxn+2

n!

Derivatives at x = 0 are calculable from series coefficients.

∞

∑
n=0

(−1)n
5nxn+2

n!
≫≫

∞

∑
n=0

((−1)n
5n

n!
)xn+2

⟹ an+2 = (−1)n
5n

n!

Coefficient with an+2 corresponds to the term with xn+2, not necessarily the (n + 2)th

term (e.g. if the first term is x2 as here).

f (22)(0) = 22! ⋅ a22

≫≫ 520 ⋅
22!
20!

≫≫ 520 ⋅ 22 ⋅ 21
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03 Theory

Computing a Taylor series

Find the first five terms of the Taylor series of f(x) = √x + 1 centered at c = 3.

Solution

A Taylor series is just a Maclaurin series that isn’t centered at c = 0.

The general format looks like this:

f(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + ⋯

The coefficients satisfy an = f (n)(c)
n! . (Notice the c.)

We find the coefficients by computing the derivatives and evaluating at x = 3:

By dividing by n! we can write out the first terms of the series:

f(x) = (x + 1)1/2, f(3) = 2

f ′(x) =
1
2

(x + 1)−1/2, f ′(3) =
1
4

f ′′(x) = −
1
4

(x + 1)−3/2, f ′′(3) = −
1

32

f ′′′(x) =
3
8

(x + 1)−5/2, f ′′′(3) =
3

256

f (4)(x) = −
15
16

(x + 1)−7/2, f (4)(3) = −
15

2048

f(x) = √x + 1

= 2 +
1
4

(x − 3) −
1
64

(x − 3)2 +
1

512
(x − 3)3 −

5
16, 384

(x − 3)4 + ⋯

Study these!

Memorize all of these series!
Recognize all of these series!
Recognize all of these summation formulas!

1
1 − x

= 1 + x + x2 + ⋯ =
∞

∑
n=0

xn, R = 1, interval:  (−1, 1)

ln(1 − x) = −
x

1
−

x2

2
−

x3

3
− ⋯ =

∞

∑
n=0

−
xn+1

n + 1
, R = 1, interval:  [−1, 1)

tan−1 x = x −
x3

3
+

x5

5
− ⋯ =

∞

∑
n=0

(−1)n
x2n+1

2n + 1
, R = 1, interval:  [−1, 1]

ex = 1 +
x

1!
+

x2

2!
+ ⋯ =

∞

∑
n=0

xn

n!
, R = ∞

cosx = 1 −
x2

2!
+

x4

4!
− ⋯ =

∞

∑
n=0

(−1)n
x2n

(2n)!
, R = ∞

sinx = x −
x3

3!
+

x5

5!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n+1

(2n + 1)!
, R = ∞
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Applications of Taylor series

Videos

04 Theory reminder

Videos, Math Dr. Bob

Approximating with Maclaurin polynomials: f(x) = ln(1 − x) to find ln(1.1)

Approximating with Taylor polynomials: f(x) = 1
x+1  at x = 1 to find 1/2.1

Linear approximation is the technique of approximating a specific value of a function, say f(x1), at a
point x1 that is close to another point x0 where we know the exact value f(x0). We write Δx for x1 − x0,
and y0 = f(x0), and y1 = f(x1). Then we write dy = f ′(x0) ⋅ Δx and use the fact that:

y1 ≈ y0 + dy = y0 + f ′(x0) ⋅ Δx

Now recall the linearization of a function, which is itself another function:

Given a function f(x), the linearization L(x) at the basepoint x = c is:

L(x) = f(c) + f ′(c)(x − c)

The graph of this linearization L(x) is the tangent line to the curve y = f(x) at the point (c, f(c)).

The linearization L(x) may be used as a replacement for f(x) for values of x near c. The closer x is to c,
the more accurate the approximation L(x) is for f(x).

Computing a linear approximation

For example, to approximate the value of √4.01, set f(x) = √x, set x0 = 4 and y0 = 2, and set
x1 = 4.01 so Δx = 0.01.

Then compute: f ′(x) = 1
2√x

So f ′(x0) = 1/4.

Finally:

y1 ≈ y0 + f ′(x0) ⋅ Δx ≫≫ y1 ≈ 2 +
1
4

⋅ 0.01 = 2.0025

Computing a linearization

We set f(x) = √x, and we let c = 4.

We compute f(c) = 2, and f ′(x) = 1
2√x

 so f ′(c) = 1
4 .

Plug everything in to find L(x):

L(x) = f(c) + f ′(c)(x − c) ≫≫ L(x) = 2 +
1
4

(x − 4)

Now approximate f(4.01) ≈ L(4.01):
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05 Theory

L(4.01) = 2 +
1
4

(4.01 − 4) = 2.0025

These polynomials are generalizations of linearization.
Specifically, f(c) = T0(x), and L(x) = T1(x).

The Taylor series Tn(x) is a better approximation of f(x) than Ti(x) for any i < n.

Taylor polynomials

The Taylor polynomials Tn(x) of a function f(x) are the partial sums of the Taylor series of f(x):

TN(x) =
N

∑
n=0

f (n)(c)
n!

(x − c)n = f(c) +
f ′(c)

1!
(x − c) +

f ′′(c)
2!

(x − c)2 + ⋯

Facts about Taylor series

The series Tn(x) has the same derivatives as f(x) at the point x = c. This fact can be verified by
visual inspection of the series: apply the power rule and chain rule, then plug in x = c and all factors
left with (x − c) will become zero.

The difference f(x) − Tn(x) vanishes to order n at x = c:

The factor (x − c)n drives the whole function to zero with order n as x → c.

If we only considered orders up to n, we might say that f(x) and Tn(x) are the same near c.

f(x) − Tn(x) =
f (n)(c)
n!

(x − c)n +
f (n+1)(c)
(n + 1)!

(x − c)n+1 + ⋯

= (x − c)n(
f (n)(c)
n!

+
f (n+1)(c)
(n + 1)!

(x − c) + ⋯ )
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06 Illustration

Taylor polynomial approximations

Let f(x) = sinx and let Tn(x) be the Taylor polynomials expanded around c = 0.

By considering the alternating series error bound, find the first n for which Tn(0.02) must have error
less than 10−6.

Solution

(1) Write the Maclaurin series of sinx because we are expanding around c = 0.

Alternating sign, odd function:

sinx = x −
x3

3!
+

x5

5!
−

x7

7!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n+1

(2n + 1)!

(2)

AST error bound formula is:

|En| ≤ an+1

Here the series is S = a0 − a1 + a2 − a3 + ⋯  and En = S − Sn is the error.

(3) Implement error bound to set up equation for n.

Find n such that an+1 ≤ 10−6, and therefore by the AST error bound formula:

|En| ≤ an+1 ≤ 10−6

Plug in x = 0.02.

From the series of sinx we obtain for a2n+1:

a2n+1 =
0.022n+1

(2n + 1)!

We seek the first time it happens that a2n+1 ≤ 10−6.

(4) Solve for the first time a2n+1 ≤ 10−6.

Equations to solve:

0.022n+1

(2n + 1)!
≤ 10−6 but:

0.022(n−1)+1

(2(n − 1) + 1)!
≰ 10−6

Method: list the values:

Notice this series is alternating, so AST error bound formula applies.

Notice that x = 0.02 is part of the terms ai in this formula.

Calculus II - Lecture notes - W11

8 / 10

af://h3-20


The first time a2n+1 is below 10−6 happens when 2n + 1 = 5.

(5) Interpret result and state the answer.

When 2n + 1 = 5, the term x2n+1

(2n + 1)!
 at x = 0.02 is less than 10−6.

Therefore the sum of prior terms is accurate to an error of less than 10−6.

The sum of prior terms equals T4(0.02).

Since T4(x) = T3(x) because there is no x4 term, the same sum is T3(0.02).

The final answer is n = 3.

0.021

1!
= 0.02,

0.023

3!
≈ 1.33 × 10−6,

0.025

5!
≈ 2.67 × 10−11, …

It would be wrong to infer at the beginning that the answer is 5, or to solve
2n + 1 = 5 to get n = 2.

Taylor polynomials to approximate a definite integral

Approximate ∫
0.3

0
e−x2

dx using a Taylor polynomial with an error no greater than 10−5.

Solution

(1) Write the series of the integrand.

Plug u = −x2 into the series of eu:

(2) Compute definite integral by terms.

Antiderivative by terms:

Plug in bounds for definite integral:

eu = 1 +
u

1!
+

u2

2!
+ ⋯

≫≫ e−x2
= 1 −

1
2!
x2 +

1
4!
x4 −

1
6!
x6 + ⋯

∫ 1 −
1
2!
x2 +

1
4!
x4 −

1
6!
x6 + ⋯ dx

≫≫ x −
1
3!
x3 +

1
5!
x5 −

1
7!
x7 + ⋯
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(3) Notice AST, apply error formula.

Compute some terms:

0.33

3!
≈ 0.0045,

0.35

5!
≈ 2.0 × 10−5,

0.37

7!
≈ 4.34 × 10−8

So we can guarantee an error less than 4.34 × 10−5 by summing the first terms through 0.35

5! .

Final answer is 0.3 −
0.33

3!
+

0.35

5!
≈ 0.291243.

∫
0.3

0
e−x2

dx ≫≫ x −
1
3!
x3 +

1
5!
x5 −

1
7!
x7 + ⋯

0.3

0

≫≫ 0.3 −
0.33

3!
+

0.35

5!
−

0.37

7!
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