Calculus II - Lecture notes - W11

Taylor and Maclaurin series

Videos

Videos, Math Dr. Bob

• Maclaurin series: $f(x) = \frac{1}{(1-x)^2}$

• Maclaurin series: $f(x) = e^x$

• Maclaurin series: $f(x) = \sin x$, $\cos x$, $\tan x$

• Taylor series: $f(x) = \ln x$ at x = 1

01 Theory

Suppose that we have a power series function:

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

Consider the *successive derivatives* of f:

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \cdots$$
 $f'(x) = 0 + a_1 + 2 \cdot a_2x^1 + 3 \cdot a_3x^2 + 4 \cdot a_4x^3 + \cdots$
 $f''(x) = 0 + 0 + 2 \cdot a_2 + 3 \cdot 2 \cdot a_3x^1 + 4 \cdot 3 \cdot a_4x^2 + \cdots$
 $f'''(x) = 0 + 0 + 0 + 3 \cdot 2 \cdot 1 \cdot a_3 + 4 \cdot 3 \cdot 2 \cdot a_4x^1 + \cdots$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $f^{(n)}(x) = 0 + 0 + 0 + 0 + \cdots + n! \cdot a_n + \cdots$

When these functions are evaluated at x = 0, all terms with a positive x-power become zero:

This last formula is the basis for Taylor and Maclaurin series:

Power series: Derivative-Coefficient Identity

$$f^{(n)}(0) = n! \cdot a_n$$

This identity holds for a power series function $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$ which has a nonzero radius of convergence.

We can apply the identity in both directions:

- Know f(x)? \longrightarrow Calculate a_n for any n.
- Know a_n ? \leadsto Calculate $f^{(n)}(0)$ for any n.

Many functions can be 'expressed' or 'represented' near x = c (i.e. for small enough |x - c|) as convergent power series. (This is true for almost all the functions encountered in pre-calculus and calculus.)

Such a power series representation is called a **Taylor series**.

When c = 0, the Taylor series is also called the **Maclaurin series**.

One power series representation we have already studied:

$$\frac{1}{1-x} = 1+x+x^2+x^3+\cdots$$

Whenever a function has a power series (Taylor or Maclaurin), the Derivative-Coefficient Identity may be applied to *calculate the coefficients* of that series.

Conversely, sometimes a series can be interpreted as an *evaluated power series* coming from x = c for some c. If the closed form function format can be obtained for this power series, the *total sum of the original series may be discovered* by putting x = c in the argument of the function.

02 Illustration

\equiv Example - Maclaurin series of e^x

What is the Maclaurin series of $f(x) = e^x$?

Solution

Because $\frac{d}{dx}e^x = e^x$, we find that $f^{(n)}(x) = e^x$ for all n.

So $f^{(n)}(0) = e^0 = 1$ for all n. Therefore $a_n = \frac{1}{n!}$ for all n by the Derivative-Coefficient identity.

Thus:

$$e^x = 1 + rac{x}{1!} + rac{x^2}{2!} + rac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} rac{x^n}{n!}$$

\equiv Example - Maclaurin series of $\cos x$

Find the Maclaurin series representation of $\cos x$.

Solution

Use the Derivative-Coefficient Identity to solve for the coefficients:

$$a_n = rac{f^{(n)}(0)}{n!}$$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	a_n
0	$\cos x$	1	1
1	$-\sin x$	0	0
2	$-\cos x$	-1	-1/2
3	$\sin x$	0	0

n	$f^{(n)}(x)$	$f^{(n)}(0)$	a_n
4	$\cos x$	1	1/24
5	$-\sin x$	0	0
:	:	:	:

By studying the generating pattern of the coefficients, we find for the series:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

∷ Maclaurin series from other Maclaurin series

- (a) Find the Maclaurin series of $\sin x$ using the Maclaurin series of $\cos x$.
- (b) Find the Maclaurin series of $f(x)=x^2e^{-5x}$ using the Maclaurin series of e^x .
- (c) Using (b), find the *value* of $f^{(22)}(0)$.

Solution

(a)

Remember that $\frac{d}{dx}\cos x = -\sin x$

Differentiate $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$

Differentiate term-by-term:

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \gg 0 - 2\frac{x^1}{2!} + 4\frac{x^3}{4!} - 6\frac{x^5}{6!} + \cdots$$
$$= -\frac{x^1}{1!} + \frac{x^3}{3!} - \frac{x^5}{5!} - \cdots$$

Take negative because $\sin x = -\frac{d}{dx}\cos x$:

$$\gg \gg x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Final answer is $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$

- (b)
- (1)

$${\mathscr O}$$
 Recall the series $e^u=1+rac{u^1}{1!}+rac{u^2}{2!}+rac{u^3}{3!}+\cdots$

Compute the series for e^{-5x} .

Set u = -5x:

$$1 + rac{u^1}{1!} + rac{u^2}{2!} + rac{u^3}{3!} + \cdots$$

$$\gg\gg 1+\frac{(-5x)}{1!}+\frac{(-5x)^2}{2!}+\frac{(-5x)^3}{3!}+\cdots$$

(2) Compute the product.

Product of series:

$$x^{2}e^{-5x} \gg x^{2}\left(1 + \frac{(-5x)}{1!} + \frac{(-5x)^{2}}{2!} + \frac{(-5x)^{3}}{3!} + \cdots\right)$$

$$\gg x^{2} - 5x^{3} + \frac{25}{2}x^{4} - \frac{125}{3!}x^{5} + \cdots$$

$$\gg \sum_{n=0}^{\infty} (-1)^{n} \frac{5^{n}x^{n+2}}{n!}$$

(c)

(1)

\triangle Derivatives at x = 0 are calculable from series coefficients.

Suppose we know the series $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$

Then $f^{(n)}(0) = n! \cdot a_n$.

It may be easier to compute a_n for a given f(x) than to compute the derivative functions $f^{(n)}(x)$ and then evaluate them.

(2) Compute a_{22} .

Write the series such that it reveals the coefficients:

$$\sum_{n=0}^{\infty} (-1)^n \frac{5^n x^{n+2}}{n!} \qquad \gg \gg \qquad \sum_{n=0}^{\infty} \left((-1)^n \frac{5^n}{n!} \right) x^{n+2}$$

$$\implies \qquad a_{n+2} = (-1)^n \frac{5^n}{n!}$$

 \mathscr{O} Coefficient with a_{n+2} corresponds to the term with x^{n+2} , not necessarily the $(n+2)^{\text{th}}$ term (e.g. if the first term is x^2 as here).

Compute a_{22} :

$$a_{22} = (-1)^{20} \frac{5^{20}}{20!}$$
 $\gg \gg$ $5^{20} \frac{1}{20!}$

(3) Compute $f^{(22)}(0)$.

Use Derivative-Coefficient Identity:

$$f^{(22)}(0) = 22! \cdot a_{22}$$
 $\gg 5^{20} \cdot \frac{22!}{20!} \gg 5^{20} \cdot 22 \cdot 21$

≡ Computing a Taylor series

Find the first five terms of the Taylor series of $f(x) = \sqrt{x+1}$ centered at c = 3.

Solution

A Taylor series is just a Maclaurin series that isn't centered at c = 0.

The general format looks like this:

$$f(x) = a_0 + a_1(x-c) + a_2(x-c)^2 + a_3(x-c)^3 + \cdots$$

The coefficients satisfy $a_n = \frac{f^{(n)}(c)}{n!}$. (Notice the c.)

We find the coefficients by computing the derivatives and evaluating at x = 3:

$$f(x) = (x+1)^{1/2}, \qquad f(3) = 2$$
 $f'(x) = \frac{1}{2}(x+1)^{-1/2}, \qquad f'(3) = \frac{1}{4}$
 $f''(x) = -\frac{1}{4}(x+1)^{-3/2}, \qquad f''(3) = -\frac{1}{32}$
 $f'''(x) = \frac{3}{8}(x+1)^{-5/2}, \qquad f'''(3) = \frac{3}{256}$
 $f^{(4)}(x) = -\frac{15}{16}(x+1)^{-7/2}, \qquad f^{(4)}(3) = -\frac{15}{2048}$

By dividing by n! we can write out the first terms of the series:

$$f(x) = \sqrt{x+1}$$

$$= 2 + \frac{1}{4}(x-3) - \frac{1}{64}(x-3)^2 + \frac{1}{512}(x-3)^3 - \frac{5}{16,384}(x-3)^4 + \cdots$$

03 Theory

△ Study these!

- · Memorize all of these series!
- · Recognize all of these series!
- · Recognize all of these summation formulas!

$$\begin{array}{lll} \frac{1}{1-x} = 1 + x + x^2 + \cdots & = & \sum_{n=0}^{\infty} x^n, & R = 1, & \text{interval: } (-1,1) \\ \ln(1-x) = -\frac{x}{1} - \frac{x^2}{2} - \frac{x^3}{3} - \cdots & = & \sum_{n=0}^{\infty} -\frac{x^{n+1}}{n+1}, & R = 1, & \text{interval: } [-1,1) \\ \tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots & = & \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, & R = 1, & \text{interval: } [-1,1] \\ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots & = & \sum_{n=0}^{\infty} \frac{x^n}{n!}, & R = \infty \\ \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots & = & \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, & R = \infty \\ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots & = & \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, & R = \infty \end{array}$$

Applications of Taylor series

Videos

Videos, Math Dr. Bob

- Approximating with Maclaurin polynomials: $f(x) = \ln(1-x)$ to find $\ln(1.1)$
- Approximating with Taylor polynomials: $f(x) = \frac{1}{x+1}$ at x = 1 to find 1/2.1

04 Theory reminder

Linear approximation is the technique of approximating a specific value of a function, say $f(x_1)$, at a point x_1 that is close to another point x_0 where we know the exact value $f(x_0)$. We write Δx for $x_1 - x_0$, and $y_0 = f(x_0)$, and $y_1 = f(x_1)$. Then we write $dy = f'(x_0) \cdot \Delta x$ and use the fact that:

$$y_1pprox y_0+dy=y_0+f'(x_0)\cdot \Delta x$$

≡ Computing a linear approximation

For example, to approximate the value of $\sqrt{4.01}$, set $f(x) = \sqrt{x}$, set $x_0 = 4$ and $y_0 = 2$, and set $x_1 = 4.01$ so $\Delta x = 0.01$.

Then compute: $f'(x) = \frac{1}{2\sqrt{x}}$

So $f'(x_0) = 1/4$.

Finally:

$$y_1pprox y_0+f'(x_0)\cdot \Delta x \qquad \gg \gg \qquad y_1pprox 2+rac{1}{4}\cdot 0.01=2.0025$$

Now recall the **linearization** of a function, which is itself another function:

Given a function f(x), the linearization L(x) at the basepoint x = c is:

$$L(x) = f(c) + f'(c)(x - c)$$

The graph of this linearization L(x) is the tangent line to the curve y = f(x) at the point (c, f(c)).

The linearization L(x) may be used as a replacement for f(x) for values of x near c. The closer x is to c, the more accurate the approximation L(x) is for f(x).

E Computing a linearization

We set $f(x) = \sqrt{x}$, and we let c = 4.

We compute f(c)=2, and $f'(x)=\frac{1}{2\sqrt{x}}$ so $f'(c)=\frac{1}{4}$.

Plug everything in to find L(x):

$$L(x)=f(c)+f'(c)(x-c)$$
 $\gg\gg$ $L(x)=2+rac{1}{4}(x-4)$

Now approximate $f(4.01) \approx L(4.01)$:

$$L(4.01) = 2 + rac{1}{4}(4.01 - 4) = 2.0025$$

05 Theory

⊞ Taylor polynomials

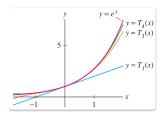
The **Taylor polynomials** $T_n(x)$ of a function f(x) are the partial sums of the Taylor series of f(x):

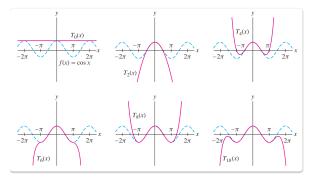
$$T_N(x) = \sum_{n=0}^N rac{f^{(n)}(c)}{n!} (x-c)^n = f(c) + rac{f'(c)}{1!} (x-c) + rac{f''(c)}{2!} (x-c)^2 + \cdots$$

These polynomials are generalizations of linearization.

Specifically, $f(c) = T_0(x)$, and $L(x) = T_1(x)$.

The Taylor series $T_n(x)$ is a better approximation of f(x) than $T_i(x)$ for any i < n.





Facts about Taylor series

The series $T_n(x)$ has the same derivatives as f(x) at the point x = c. This fact can be verified by visual inspection of the series: apply the power rule and chain rule, then plug in x = c and all factors left with (x - c) will become zero.

The difference $f(x) - T_n(x)$ vanishes to order n at x = c:

$$egin{array}{lcl} f(x)-T_n(x) & = & rac{f^{(n)}(c)}{n!}(x-c)^n+rac{f^{(n+1)}(c)}{(n+1)!}(x-c)^{n+1}+\cdots \ \\ & = & (x-c)^n\left(rac{f^{(n)}(c)}{n!}+rac{f^{(n+1)}(c)}{(n+1)!}(x-c)+\cdots
ight) \end{array}$$

The factor $(x-c)^n$ drives the whole function to zero with order n as $x \to c$.

If we only considered orders up to n, we might say that f(x) and $T_n(x)$ are the same near c.

06 Illustration

≡ Taylor polynomial approximations

Let $f(x) = \sin x$ and let $T_n(x)$ be the Taylor polynomials expanded around c = 0.

By considering the alternating series error bound, find the first n for which $T_n(0.02)$ must have error less than 10^{-6} .

Solution

(1) Write the Maclaurin series of $\sin x$ because we are expanding around c = 0.

Alternating sign, odd function:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

(2)

△ Notice this series is alternating, so AST error bound formula applies.

AST error bound formula is:

$$|E_n| \leq a_{n+1}$$

Here the series is $S = a_0 - a_1 + a_2 - a_3 + \cdots$ and $E_n = S - S_n$ is the error.

 \mathcal{D} Notice that x = 0.02 is part of the terms a_i in this formula.

(3) Implement error bound to set up equation for n.

Find n such that $a_{n+1} \leq 10^{-6}$, and therefore by the AST error bound formula:

$$|E_n| \le a_{n+1} \le 10^{-6}$$

Plug in x = 0.02.

From the series of $\sin x$ we obtain for a_{2n+1} :

$$a_{2n+1} = rac{0.02^{2n+1}}{(2n+1)!}$$

We seek the first time it happens that $a_{2n+1} \leq 10^{-6}$.

(4) Solve for the first time $a_{2n+1} \leq 10^{-6}$.

Equations to solve:

$$rac{0.02^{2n+1}}{(2n+1)!} \le 10^{-6} \qquad ext{but:} \quad rac{0.02^{2(n-1)+1}}{(2(n-1)+1)!}
ot \le 10^{-6}$$

Method: list the values:

$$rac{0.02^1}{1!} = 0.02, \qquad rac{0.02^3}{3!} pprox 1.33 imes 10^{-6},$$

$$rac{0.02^5}{5!}pprox 2.67 imes 10^{-11}, \qquad \dots$$

The first time a_{2n+1} is below 10^{-6} happens when 2n+1=5.

(5) Interpret result and state the answer.

When 2n + 1 = 5, the term $\frac{x^{2n+1}}{(2n+1)!}$ at x = 0.02 is less than 10^{-6} .

Therefore the sum of prior terms is accurate to an error of less than 10^{-6} .

The sum of prior terms equals $T_4(0.02)$.

Since $T_4(x) = T_3(x)$ because there is no x^4 term, the same sum is $T_3(0.02)$.

The final answer is n = 3.

 \mathscr{O} It would be wrong to infer at the beginning that the answer is 5, or to solve 2n+1=5 to get n=2.

≡ Taylor polynomials to approximate a definite integral

Approximate $\int_0^{0.3} e^{-x^2} dx$ using a Taylor polynomial with an error no greater than 10^{-5} .

Solution

(1) Write the series of the integrand.

Plug $u = -x^2$ into the series of e^u :

$$e^u = 1 + rac{u}{1!} + rac{u^2}{2!} + \cdots$$

$$\gg \gg e^{-x^2} = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots$$

(2) Compute definite integral by terms.

Antiderivative by terms:

$$\int 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots dx$$

$$\gg\gg x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots$$

Plug in bounds for definite integral:

$$\int_0^{0.3} e^{-x^2} dx \qquad \gg \gg \qquad x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots \Big|_0^{0.3}$$

$$\gg \gg \qquad 0.3 - \frac{0.3^3}{3!} + \frac{0.3^5}{5!} - \frac{0.3^7}{7!} + \dots$$

(3) Notice AST, apply error formula.

Compute some terms:

$$rac{0.3^3}{3!}pprox 0.0045, \qquad rac{0.3^5}{5!}pprox 2.0 imes 10^{-5}, \qquad rac{0.3^7}{7!}pprox 4.34 imes 10^{-8}$$

So we can guarantee an error less than 4.34×10^{-5} by summing the first terms through $\frac{0.3^5}{5!}$.

Final answer is
$$0.3 - \frac{0.3^3}{3!} + \frac{0.3^5}{5!} \approx 0.291243$$
.