W01 - Examples

Revolution of a triangle

A rotation-symmetric 3D body has cross section given by the region between y = 3x + 2, y = 6 - x, x = 0, and is rotated around the y-axis. Find the volume of this 3D body.

Solution

(1) Define the cross section region.

Bounded above-right by y = 6 - x.

Bounded below-right by y = 3x + 2.

 \triangle These intersect at x = 1.

Bounded at left by x = 0.

(2) Define range of integration variable.

Rotated around *y*-axis, therefore use *x* for integration variable (shells!).

Integral over $x \in [0, 1]$:

$$V=\int_0^1 2\pi R h\, dr$$

(3) Interpret R.

Radius of shell-cylinder equals distance along x:

$$R(x) = x$$

(4) Interpret h.

Height of shell-cylinder equals distance from lower to upper bounding lines:

$$h(x) = (6-x) - (3x+2)$$

= $4-4x$

(5) Interpret dr.

dr is limit of Δr which equals Δx here so dr = dx.

(6) Plug data in volume formula.

Insert data and compute integral:

$$V=\int_0^1 2\pi R h\, dr$$

$$= \int_0^1 2\pi \cdot x (4-4x) \, dx$$

$$=2\pi \left(2x^2-rac{4x^3}{3}
ight)igg|_0^1>=rac{4\pi}{3}$$

A and T factors

Compute the integral: $\int x \cos x \, dx$

Solution

(1) Choose u = x.

Set u(x) = x because x simplifies when differentiated.

(By the trick: x is Algebraic, i.e. more "u", and $\cos x$ is Trig, more "v".)

Remaining factor must be v':

$$v'(x) = \cos x$$

(2) Compute u' and v.

Derive u:

$$u'=1$$

Antiderive v':

$$v = \sin x$$

Obtain chart:

$$\begin{array}{c|cccc} u = x & v' = \cos x & \longrightarrow & \int u \cdot > v' & \text{original} \\ \hline u' = 1 & v = \sin x & \longrightarrow & \int u' \cdot v & \text{final} \end{array}$$

(3) Plug into IBP formula.

Plug in all data:

$$\int x \cos x \, dx = x \sin x - \int 1 \cdot \sin x \, dx$$

Compute integral on RHS:

$$\int x \cos x \, dx = x \sin x + \cos x + C$$

Note: the point of IBP is that this integral is easier than the first one!

(4) Final answer is: $x \sin x + \cos x + C$