W03 - Examples

Partial fractions with repeated factor

Find the partial fraction decomposition:

$$\frac{3x-9}{x^3+3x^2-4}$$

Solution

(1)

△ Check! Numerator is smaller than denominator (degree-wise).

Factor the denominator.

Rational roots theorem: x = 1 is a zero.

Divide by x - 1:

$$\frac{x^3 + 3x^2 - 4}{x - 1} = x^2 + 4x + 4$$

Factor again:

$$x^2 + 4x + 4 = (x+2)^2$$

Final factored form:

$$x^3 + 3x^2 - 4$$
 $\gg \gg (x-1)(x+2)^2$

(2) Write the generic PFD.

Allow all lower powers:

$$\frac{3x-9}{(x-1)(x+2)^2} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$$

(3) Solve for A, B, and C.

Multiply across by the common denominator:

$$3x - 9 = A(x+2)^2 + B(x-1)(x+2) + C(x-1)$$

For A, set x = 1, obtain:

$$3 \cdot 1 - 9 = A(1+2)^2 + B \cdot 0 + C \cdot 0$$

>>> $-6 = 9A$
>>> $A = -2/3$

For C, set x = -2, obtain:

$$3\cdot (-2)-9=A\cdot 0+B\cdot 0+C\cdot (-3)$$

 >>>
$$-15=-3C$$

 >>>
$$C=5$$

For B, insert prior results and solve.

Plug in A and C:

$$3x-9=-rac{2}{3}(x+2)^2+B(x-1)(x+2)+5(x-1)$$

Now plug in another convenient x, say x = 3:

$$0 = -rac{2}{3} \cdot 5^2 + B \cdot 2 \cdot 5 + 5 \cdot 2$$
 $rac{50}{3} - 10 = 10B$ $\gg \gg$ $B = rac{2}{3}$

(4) Plug in A, B, C for the final answer.

Final answer:

$$\frac{3x-9}{x^3+3x^2-4} = \frac{-2/3}{x-1} + \frac{2/3}{x+2} + \frac{5}{(x+2)^2}$$

Partial fractions - repeated quadratic, linear tops

Compute the integral:

$$\int \frac{x^3+1}{(x^2+4)^2} \, dx$$

Solution

(1) Compute the partial fraction decomposition.

Check that numerator degree is lower than denominator. \checkmark

Factor denominator completely. ✓ (No real roots.)

Write generic PFD:

$$\frac{x^3+1}{(x^2+4)^2} = \frac{Ax+B}{x^2+4} + \frac{Cx+D}{(x^2+4)^2}$$

Notice "linear over quadratic" in first term.

\triangle Notice repeated factor: sum with incrementing powers up to 2.

Common denominators and solve:

$$x^{3} + 1 = (Ax + B)(x^{2} + 4) + Cx + D$$

 $\gg \gg x^{3} + 1 = Ax^{3} + Bx^{2} + (4A + C)x + 4B + D$
 $\gg \gg A = 1, B = 0$
 $\gg \gg C = -4, D = 1$

Therefore:

$$\frac{x^3+1}{(x^2+4)^2} = \frac{x}{x^2+4} + \frac{-4x+1}{(x^2+4)^2}$$

(2) Integrate by terms.

Integrate the first term using $u = x^2 + 4$:

$$\int \frac{x}{x^2 + 4} dx \quad \stackrel{u = x^2 + 4}{\gg} \quad \frac{1}{2} \int \frac{du}{u}$$

$$\gg \gg \quad \frac{1}{2} \ln |u| + C \quad \gg \gg \quad \frac{1}{2} \ln \left| x^2 + 4 \right| + C$$

Break up the second term:

$$\frac{-4x+1}{(x^2+4)^2} \quad \gg \gg \quad \frac{-4x}{(x^2+4)^2} + \frac{1}{(x^2+4)^2}$$

Integrate the first term of RHS:

$$\int \frac{-4x}{(x^2+4)^2} dx \quad \gg \gg \quad -2 \int \frac{du}{u^2}$$

$$\gg\gg \frac{2}{u}+C \gg\gg \frac{2}{x^2+4}+C$$

Integrate the second term of RHS:

$$\int rac{dx}{(x^2+4)^2} \quad \stackrel{x=2 an heta}{\gg} \quad \int rac{2\sec^2 heta\,d heta}{16\sec^4 heta}$$

$$\gg\gg \frac{1}{8}\int\cos^2\theta\,d\theta \gg\gg \frac{1}{16}\theta+\frac{1}{32}\sin(2\theta)+C$$

"Rationalize a quotient" - convert into PFD

Sometimes an integrand may be *converted* to a rational function using a *substitution*.

Consider this integral:

$$\int \frac{\sqrt{x+4}}{x} \, dx$$

Set $u = \sqrt{x+4}$, so $x = u^2 - 4$ and dx = 2u du:

$$\gg \gg \int \frac{2u\,du}{u^2-4}$$

Now this rational function has a partial fraction decomposition:

$$\frac{2u}{u^2-4}$$
 >>> $\frac{2u}{(u-2)(u+2)}$ >>> $\frac{1}{u-2} + \frac{1}{u+2}$

It is easy to integrate from there!

Exercise examples:

- To compute $\int \frac{\sqrt{x}}{x-1} dx$, try the substitution $u = \sqrt{x}$.
- To compute $\int rac{dx}{\sqrt[3]{x}-\sqrt[3]{x}}$, try the substitution $u=\sqrt[6]{x}$.
- To compute $\int \frac{1}{x-\sqrt{x+2}} \, dx$, try the substitution $u=\sqrt{x+2}$.

Simpson's Rule on the Gaussian distribution

The function e^{x^2} is very important for probability and statistics, but it cannot be integrated analytically.

Apply Simpson's Rule to approximate the integral:

$$\int_0^1 e^{x^2} \, dx$$

with $\Delta x = 0.1$ and n = 10. What error bound is guaranteed for this approximation?

Solution

(1) We need a table of values of x_i and $y_i = f(x_i)$:

Ī	x_i :	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Ī	$f(x_i)$:	$e^{0.0^2}$	$e^{0.1^2}$	$e^{0.2^2}$	$e^{0.3^2}$	$e^{0.4^2}$	$e^{0.5^2}$	$e^{0.6^2}$	$e^{0.7^2}$	$e^{0.8^2}$	$e^{0.9^2}$	$e^{1.0^2}$
Ī	\approx	1.000	1.010	1.041	1.094	1.174	1.284	1.433	1.632	1.896	2.248	2.718

These can be plugged into the Simpson Rule formula to obtain our desired approximation:

$$S_{10} = \frac{1}{3} \cdot 0.1 \cdot \left(1.000 + 4 \cdot 1.010 + 2 \cdot 1.041 + 4 \cdot 1.094 + \dots + 2 \cdot 1.896 + 4 \cdot 2.248 + 2.718\right)$$

$$\approx 1.463$$

To find the error bound we need to find the smallest number we can manage for K_4 .

Take four derivatives and simplify:

$$f^{(4)}(x) = (12 + 48x^2 + 16x^4)e^{x^2}$$

On the interval $x \in [0,1]$, this function is maximized at x = 1. Use that for the optimal K_4 :

$$f^{(4)}(1.000) = 206.589$$

Finally we plug this into the error bound formula:

$$egin{aligned} rac{K_4(b-a)^5}{180n^4} &= rac{206.589 \cdot 1.000^5}{180 \cdot 10^4} pprox 0.0001 \ \gg \gg & ext{Error}(S_{10}) \leq 0.0001 \end{aligned}$$