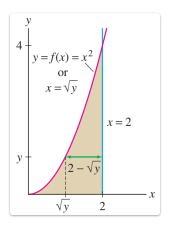
W06 - Examples

Moments and center of mass

CoM of a parabolic plate

Find the CoM of the region depicted:



Solution

(1) Compute the total mass:

Area under the curve with density factor ρ :

$$M = \int_0^2 \rho \, x^2 \, dx \quad \gg \gg \quad \rho \, \frac{x^3}{3} \bigg|_0^2 \quad \gg \gg \quad \frac{8\rho}{3}$$

(2) Compute M_y :

Formula:

$$M_y = \int_a^b
ho \, x \, dA$$

Interpret and calculate:

$$M_y = \int_0^2
ho \, x f(x) \, dx \quad \gg \gg \quad
ho \int_0^2 x^3 \, dx$$
 $\gg \gg \quad 4
ho = M_y$

(3) Compute M_x :

Formula:

$$M_x = \int_c^d
ho \, y \, dA$$

Width of horizontal strips between the curves:

$$w(y)=2-\sqrt{y}$$

Interpret dA:

$$dA = (2 - \sqrt{y}) \, dy$$

Calculate integral:

$$egin{align} M_x &= \int_c^d
ho \, y \, dA \quad \gg \gg \quad \int_0^4
ho \, y (2 - \sqrt{y}) \, dy \ &\gg \gg \quad \int_0^4
ho \, y (2 - \sqrt{y}) \, dy \quad \gg \gg \quad \int_0^4
ho \, 2y \, dy - \int_0^4
ho \, y^{3/2} \, dy \ &\gg \gg \quad rac{16
ho}{5} = M_x \ \end{gathered}$$

(4) Compute CoM coordinates from moments:

CoM formulas:

$$ar{x} = rac{M_y}{M}, \qquad ar{y} = rac{M_x}{M}$$

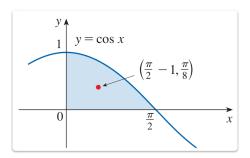
Insert data:

$$\bar{x} = \frac{4\rho}{8\rho/3}$$
 $\gg \gg \frac{3}{2}$, $\bar{y} = \frac{16\rho/5}{8\rho/3}$ $\gg \gg \frac{6}{5}$

$$\mathrm{CoM} \ = \ (ar{x},ar{y}) = \left(rac{3}{2},rac{6}{5}
ight)$$

Computing CoM using only vertical strips

Find the CoM of the region:



Solution

(1) Compute the total mass M:

Area under the curve times density ρ :

$$\int_0^{\pi/2}
ho\,\cos x\,dx=
ho\sin x\Big|_0^{\pi/2}=
ho$$

(2) Compute M_y using vertical strips:

Plug $f(x) = \cos x$ into formula:

$$M_y = \int_a^b
ho \, x \, f(x) \, dx \quad \gg \gg \quad \int_0^{\pi/2}
ho \, x \cos x \, dx$$

Integration by parts. Set $u=x,\,v'=\cos x$ and so $u'=1,\,v=\sin x$:

$$\int_0^{\pi/2} \rho \, x \cos x \, dx \quad \gg \gg \quad \rho \, x \sin x \Big|_0^{\pi/2} - \rho \, \int_0^{\pi/2} \sin x \, dx$$

$$\gg\gg \frac{\pi\rho}{2}\cdot 1-\rho\left(-\cos\frac{\pi}{2}--\cos 0\right)=\rho\left(\frac{\pi}{2}-1\right)$$

(3) Compute M_x , also using vertical strips:

Plug $f_2(x) = f(x) = \cos x$ and $f_1(x) = 0$ into formula:

$$M_x = \int_0^{\pi/2}
ho \, rac{1}{2} f_2^2 \, dx \quad \gg \gg \quad \int_0^{\pi/2}
ho \, rac{1}{2} {
m cos}^2 \, x \, dx$$

Integration by 'power to frequency conversion':

$$\int_0^{\pi/2}
ho \, rac{1}{2} {\cos^2 x} \, dx \quad \gg \gg \quad rac{
ho}{4} \int_0^{\pi/2} (1 + \cos 2x) \, dx$$

$$\gg \gg \frac{\rho}{4}x\Big|_0^{\pi/2} + \frac{\rho\sin 2x}{8}\Big|_0^{\pi/2} = \frac{\pi\rho}{8}$$

(4) Compute CoM:

CoM formulas:

$$ar{x} = rac{M_y}{M}, \qquad ar{y} = rac{M_x}{M}$$

Plug in data:

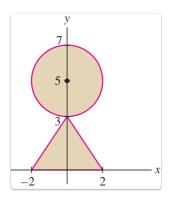
$$ar{x} = rac{
ho(\pi/2-1)}{
ho} \quad \gg \gg \quad rac{\pi}{2}-1$$

$$\bar{y} = \frac{\pi \rho/8}{\rho}$$
 $\gg \frac{\pi}{8}$

$$\mathrm{CoM} \ = \ (\bar{x}, \bar{y}) \ = \ \boxed{\left(\frac{\pi}{2} - 1, \frac{\pi}{8}\right)}$$

Center of mass using moments and symmetry

Find the center of mass of the two-part region:



Solution

(1) Symmetry: CoM on y-axis

Because the region is symmetric in the y-axis, the CoM must lie on that axis. Therefore $\bar{x}=0$.

(2) Additivity of moments:

Write M_x for the total x-moment (distance measured to the x-axis from above).

Write M_x^{tri} and M_x^{circ} for the x-moments of the triangle and circle.

Additivity of moments equation:

$$M_x = M_x^{
m tri} + M_x^{
m circ}$$

(3) Find moment of the circle M_x^{circ} :

By symmetry we know $\bar{x}^{\mathrm{circ}} = 0$.

By symmetry we know $\bar{y}^{\rm circ}=5$.

Area of circle with r=2 is $A=4\pi$, so total mass is $M=4\pi\rho$.

Centroid-from-moments equation:

$$ar{y}^{
m circ} = rac{M_x^{
m circ}}{M}$$

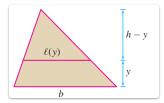
Solve the equation for M_x^{circ} :

$$ar{y}^{
m circ} = rac{M_x^{
m circ}}{M} \quad \gg \gg \quad 5 = rac{M_x^{
m circ}}{4\pi
ho}$$

$$\gg\gg~~M_x^{
m circ}=20\pi
ho$$

(4) Find moment of the triangle $M_x^{\rm tri}$ using integral formula:

Similar triangles:



Quick linear interpolation function:

$$\ell(y) = 0 + \frac{b-0}{h}(-y+h)$$

$$\gg \gg \ell(y) = b - \frac{b}{h}y$$

Thus:

$$M_x^{ ext{tri}} =
ho \int_0^h y \, \ell(y) \, dy \quad \gg \gg \quad
ho \int_0^h y \, \left(b - rac{b}{h} y
ight) dy$$

$$\gg\gg \left. \rho \left(rac{by^2}{2} - rac{by^3}{3h}
ight) \right|_0^h \gg\gg \left. rac{
ho bh^2}{6} \right.$$

Conclude:

$$M_x^{
m tri}$$
 >>> $\frac{
ho bh^2}{6}$ >>> $\frac{
ho 4\cdot 3^2}{6}$ >>> $6
ho$

(5) Apply additivity:

$$M_x = M_x^{
m tri} + M_x^{
m circ} \quad \gg \gg \quad
ho(20\pi + 6)$$

(6) Total mass of region:

Area of circle is 4π . Area of triangle is $\frac{1}{2} \cdot 4 \cdot 3 = 6$. Thus $M = \rho A = \rho (4\pi + 6)$.

(7) Compute center of mass \bar{y} from total M_x and total M:

We have $M_x = \rho(20\pi + 6)$ and $M = \rho(4\pi + 6)$. Plug into formula:

$$ar{y} = rac{M_x}{M} \quad \gg \gg \quad rac{
ho(20\pi+6)}{
ho(4\pi+6)} pprox 3.71$$

$$CoM = (\bar{x}, \bar{y}) = (0, 3.71)$$

Improper integrals

Improper integral - infinite bound

Show that the improper integral $\int_2^\infty \frac{dx}{x^3}$ converges. What is its value?

Solution

(1) Replace infinity with a new symbol R:

Compute the integral:

$$\int_{2}^{R} \frac{dx}{x^{3}} = -\frac{1}{2}x^{-2} \bigg|_{2}^{R} = \frac{1}{8} - \frac{1}{2R^{2}}$$

(2) Take limit as $R \to \infty$:

$$\lim_{R\to\infty}\frac{1}{8}-\frac{1}{2R^2}=\frac{1}{8}$$

(3) Improper integral definition:

$$\int_{2}^{\infty} \frac{dx}{x^{3}} \gg \lim_{R \to \infty} \int_{2}^{R} \frac{dx}{x^{3}} \gg \frac{1}{8}$$

Therefore that $\int_2^\infty \frac{dx}{x^3}$ converges and equals 1/8.

Improper integral - infinite integrand

Show that the improper integral $\int_0^9 \frac{dx}{\sqrt{x}}$ converges. What is its value?

Solution

(1) Replace the 0 where $\frac{1}{\sqrt{x}}$ diverges with a new symbol a:

$$\int_a^9 rac{dx}{\sqrt{x}} \quad \gg \gg \quad \int_a^9 x^{-1/2} \, dx$$

$$\gg\gg 2x^{+1/2}\Big|_a^9 \gg 6-2\sqrt{a}$$

(2) Take limit as $a \to 0^+$:

$$\lim_{a o 0^+} 6 - 2\sqrt{a} = 6$$

(3) Improper integral definition:

$$\int_a^9 \frac{dx}{\sqrt{x}} \quad \gg \gg \quad \lim_{a \to 0^+} \int_a^9 \frac{dx}{\sqrt{x}} \quad \gg \gg \quad 6$$

Conclude that $\int_0^9 \frac{dx}{\sqrt{x}}$ converges to 6.

Improper integral - infinity inside the interval

Does the integral $\int_{-1}^{+1} \frac{1}{x} dx$ converge or diverge?

Solution

(1) WRONG APPROACH:

It is *tempting* to compute the integral *incorrectly*, like this:

$$\int_{-1}^{+1} \frac{1}{x} dx = \ln|x| \Big|_{-1}^{+1} = \ln|2| - \ln|-2| = 0$$

But this is wrong. There is an infinite integrand at x = 0. We must instead break it into parts.

(2) Identify discontinuity (infinity) at x = 0:

$$\int_{-1}^{+1} rac{1}{x} \, dx \quad \gg \gg \quad \int_{-1}^{0} rac{1}{x} \, dx + \int_{0}^{+1} rac{1}{x} \, dx$$

(3) Improper integral definition:

$$\gg \gg \lim_{R o 0^-} \int_{-1}^R rac{1}{x} \ dx + \lim_{R o 0^+} \int_{R}^{+1} rac{1}{x} \ dx$$

(3) Integrate:

$$\int_{-1}^{R} \frac{1}{x} dx \quad \gg \gg \quad \ln|R| - \ln|-1| \quad \gg \gg \quad \ln|R|$$

$$\int_R^{+1} rac{1}{x} \, dx \quad \gg \gg \quad \ln|1| - \ln|R| \quad \gg \gg \quad - \ln R$$

(4) Take limits:

$$\lim_{R\to 0^-} \ln |R| = -\infty, \qquad \lim_{R\to 0^+} -\ln R = +\infty$$

Neither limit is finite. For $\int_{-1}^{+1} \frac{1}{x} dx$ to exist we'd need *both* of these limits to be finite. So: the original integral diverges.