W08 - Examples

Simple divergence test examples

Consider: $\sum_{n=1}^{\infty} \frac{n}{4n+1}$

• This diverges by the SDT because $a_n \to \frac{1}{4}$ and not 0.

Consider: $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n+1}$

- This diverges by the SDT because $\lim_{n\to\infty} a_n = \text{DNE}$.
- We can say the terms "converge to the pattern $+1, -1, +1, -1, \ldots$," but that is not a limit value.

p-series examples

By finding p and applying the p-series convergence properties:

We see that $\sum_{n=1}^{\infty} \frac{1}{n^{1.1}}$ converges: p=1.1 so p>1

But $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges: p = 1/2 so $p \leq 1$

Integral test - pushing the envelope of convergence

Does $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converge?

Does $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converge?

Notice that $\ln n$ grows $very \ slowly$ with n, so $\frac{1}{n \ln n}$ is just a *little* smaller than $\frac{1}{n}$ for large n, and similarly $\frac{1}{n(\ln n)^2}$ is just a little smaller still.

Solution

(1) The two series lead to the two functions $f(x) = \frac{1}{x \ln x}$ and $g(x) = \frac{1}{x (\ln x)^2}$.

Check applicability.

Clearly f(x) and g(x) are both continuous, positive, decreasing functions on $x \in [2, \infty)$.

(2) Apply the integral test to f(x).

Integrate f(x):

$$\begin{split} \int_2^\infty \frac{1}{x \ln x} \; dx & \gg \gg \quad \int_{u=\ln 2}^\infty \frac{1}{u} \, du \\ & \gg \gg \quad \lim_{R \to \infty} \ln u \Big|_{\ln 1}^R \quad \gg \gg \quad \infty \end{split}$$

Conclude: $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges.

(3) Apply the integral test to g(x).

Integrate g(x):

Conclude: $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converges.