W09 - Examples

Direct comparison test rational functions

(a) The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \, 3^n}$ converges by the DCT.

Choose: $a_n = \frac{1}{\sqrt{n} \, 3^n}$ and $b_n = \frac{1}{3^n}$

Check: $0 < \frac{1}{\sqrt{n} \, 3^n} \le \frac{1}{3^n}$

Observe: $\sum \frac{1}{3^n}$ is a convergent geometric series

(b) The series $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^3}$ converges by the DCT.

Choose: $a_n = \frac{\cos^2 n}{n^3}$ and $b_n = \frac{1}{n^3}$.

Check: $0 \le \frac{\cos^2 n}{n^3} \le \frac{1}{n^3}$

Observe: $\sum \frac{1}{n^3}$ is a convergent *p*-series

(c) The series $\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$ converges by the DCT.

Choose: $a_n = \frac{n}{n^3+1}$ and $b_n = \frac{1}{n^2}$

Check: $0 \le \frac{n}{n^3+1} \le \frac{1}{n^2}$ (notice that $\frac{n}{n^3+1} \le \frac{n}{n^3}$)

Observe: $\sum \frac{1}{n^2}$ is a convergent *p*-series

(d) The series $\sum_{n=2}^{\infty} \frac{1}{n-1}$ diverges by the DCT.

Choose: $a_n = \frac{1}{n}$ and $b_n = \frac{1}{n-1}$

Check: $0 \le \frac{1}{n} \le \frac{1}{n-1}$

Observe: $\sum \frac{1}{n}$ is a divergent *p*-series

Limit comparison test examples

(a) The series $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ converges by the LCT.

Choose: $a_n = \frac{1}{2^{n-1}}$ and $b_n = \frac{1}{2^n}$.

Compare in the limit:

$$\lim_{n\to\infty}\frac{a_n}{b_n}\quad\gg\gg\quad \lim_{n\to\infty}\frac{2^n}{2^n-1}\quad\gg\gg\quad 1\;=:\; L$$

Observe: $\sum \frac{1}{2^n}$ is a convergent geometric series

(b) The series $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$ diverges by the LCT.

Choose: $a_n=rac{2n^2+3n}{\sqrt{5+n^5}}$, $b_n=n^{-1/2}$

Compare in the limit:

$$egin{aligned} &\lim_{n o\infty}rac{a_n}{b_n} \quad\gg\gg &\lim_{n o\infty}rac{(2n^2+3n)\sqrt{n}}{\sqrt{5+n^5}} \ &rac{(2n^2+3n)\sqrt{n}}{\sqrt{5+n^5}} &\stackrel{n o\infty}{\longrightarrow} &rac{2n^{5/2}}{n^{5/2}} o 2 \ =: \ L \end{aligned}$$

Observe: $\sum n^{-1/2}$ is a divergent *p*-series

(c) The series $\sum_{n=0}^{\infty} \frac{n^2}{n^4 - n - 1}$ converges by the LCT.

Choose: $a_n = \frac{n^2}{n^4 - n - 1}$ and $b_n = n^{-2}$

Compare in the limit:

$$\lim_{n \to \infty} \frac{a_n}{b_n}$$
 >>> $\lim_{n \to \infty} \frac{n^4}{n^4 - n - 1}$ >>> $1 =: L$

Observe: $\sum_{n=2}^{\infty} n^{-2}$ is a converging *p*-series

Alternating series test basic illustration

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$
 converges by the AST.

Notice that $\sum \frac{1}{\sqrt{n}}$ diverges as a *p*-series with p=1/2<1.

Therefore the first series converges *conditionally*.

(b)
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2}$$
 converges by the AST.

Notice the funny notation: $\cos n\pi = (-1)^n$.

This series converges *absolutely* because $\left|\frac{\cos n\pi}{n^2}\right| = \frac{1}{n^2}$, which is a *p*-series with p = 2 > 1.

Approximating pi

The Taylor series for $\tan^{-1} x$ is given by:

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Use this series to approximate π with an error less than 0.001.

Solution

(1) The main idea is to use $\tan \frac{\pi}{4} = 1$ and thus $\tan^{-1} 1 = \frac{\pi}{4}$. Therefore:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

and thus:

$$\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \cdots$$

(2) Write E_n for the error of the approximation, meaning $E_n = S - S_n$.

By the AST error formula, we have $|E_n| < a_{n+1}$.

We desire n such that $|E_n| < 0.001$. Therefore, calculate n such that $a_{n+1} < 0.001$, and then we will know:

$$\left| E_{n}
ight| < a_{n+1} < 0.001$$

(3) The general term is $a_n = \frac{4}{2n-1}$. Plug in n+1 in place of n to find $a_{n+1} = \frac{4}{2n+1}$. Now solve:

$$a_{n+1} = rac{4}{2n+1} < 0.001$$

$$\gg \gg \frac{4}{0.001} < 2n + 1$$

$$\gg \gg 3999 < 2n$$

$$\gg \gg 2000 \le n$$

We conclude that at least 2000 terms are necessary to be confident (by the error formula) that the approximation of π is accurate to within 0.001.

Ratio test examples

(a) Observe that $\sum_{n=0}^{\infty} \frac{10^n}{n!}$ has ratio $R_n = \frac{10}{n+1}$ and thus $R_n \to 0 = L < 1$. Therefore the RaT implies that this series converges.

Simplify the ratio:

$$egin{array}{c} rac{10^{n+1}}{(n+1)!} \ rac{n!}{10^n} \end{array} \gg \gg rac{(n+1)!}{10^{n+1}} \cdot rac{n!}{10^n} \ \gg \gg rac{10 \cdot 10^n}{(n+1)n!} \cdot rac{n!}{10^n} \gg \gg rac{10}{n+1} \stackrel{n o \infty}{\longrightarrow} 0$$

Notice this technique! We *frequently* use these rules:

$$10^{n+1} = 10^n \cdot 10, \qquad (n+1)! = (n+1)n!$$

(To simplify ratios with exponents and factorials.)

(b)
$$\sum_{n=1}^{\infty} rac{n^2}{2^n}$$
 has ratio $R_n = rac{(n+1)^2}{2^{n+1}} \Big/ rac{n^2}{2^n}.$

Simplify this:

$$egin{aligned} & rac{(n+1)^2}{2^{n+1}} \Big/ rac{n^2}{2^n} \qquad \gg \gg \qquad rac{(n+1)^2}{2^{n+1}} \cdot rac{2^n}{n^2} \ & \gg \gg \qquad rac{(n+1)^2 \cdot 2^n}{n^2 \cdot 2 \cdot 2^n} \qquad \gg \gg \qquad rac{n^2 + 2n + 1}{2n^2} \stackrel{n o \infty}{ o} rac{1}{2} = L \end{aligned}$$

So the series *converges absolutely* by the ratio test.

(c) Observe that
$$\sum_{n=1}^{\infty} n^2$$
 has ratio $R_n = \frac{n^2 + 2n + 1}{n^2} o 1$ as $n o \infty$.

So the ratio test is *inconclusive*, even though this series fails the SDT and obviously diverges.

(d) Observe that
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 has ratio $R_n = \frac{n^2}{n^2 + 2n + 1} o 1$ as $n o \infty$.

So the ratio test is *inconclusive*, even though the series converges as a *p*-series with p = 2 > 1.

(e) More generally, the ratio test is usually *inconclusive for rational functions*; it is more effective to use LCT with a *p*-series.

Root test examples

(a) Observe that $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^n$ has roots of terms:

$$|a_n|^{1/n} = \left(\left(rac{1}{n}
ight)^n
ight)^{1/n} = rac{1}{n} \stackrel{n o\infty}{\longrightarrow} 0 = L$$

Because L < 1, the RooT shows that the series converges absolutely.

(b) Observe that $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n}{2n+1}\right)^n$ has roots of terms:

$$\sqrt[n]{|a_n|} = rac{n}{2n+1} \stackrel{n o\infty}{\longrightarrow} rac{1}{2} = L$$

Because L < 1, the RooT shows that the series converges absolutely.

(c) Observe that $\sum_{n=1}^{\infty} \left(\frac{3}{n}\right)^n$ converges because $\sqrt[n]{|a_n|} = \frac{3}{n} \to 0$ as $n \to \infty$.

Ratio test versus root test

Determine whether the series $\sum_{n=1}^{\infty} \frac{n^2 4^n}{5^{n+2}}$ converges absolutely or conditionally or diverges.

Solution

Before proceeding, rewrite somewhat the general term as $\left(\frac{n}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^n$.

Now we solve the problem first using the ratio test. By plugging in n+1 we see that

$$a_{n+1} = \left(rac{n+1}{5}
ight)^2 \cdot \left(rac{4}{5}
ight)^{n+1}$$

So for the ratio R_n we have:

$$\left(\frac{n+1}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^{n+1} \cdot \left(\frac{5}{n}\right)^2 \cdot \left(\frac{5}{4}\right)^n$$

$$\gg\gg \qquad rac{n^2+2n+1}{n^2}\cdotrac{4}{5}\longrightarrowrac{4}{5}<1 ext{ as } n o\infty$$

Therefore the series converges absolutely by the ratio test.

Now solve the problem again using the root test. We have for $\sqrt[n]{|a_n|}$:

$$\left(\left(\frac{n}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^n\right)^{1/n} = \left(\frac{n}{5}\right)^{2/n} \cdot \frac{4}{5}$$

To compute the limit as $n \to \infty$ we must use logarithmic limits and L'Hopital's Rule. So, first take the log:

$$\ln\left(\left(rac{n}{5}
ight)^{2/n}\cdotrac{4}{5}
ight)=rac{2}{n}\lnrac{n}{5}+\lnrac{4}{5}$$

Then for the first term apply L'Hopital's Rule:

$$rac{\ln rac{n}{5} \stackrel{d/dx}{\longrightarrow} rac{1}{n/5} \cdot rac{1}{5}}{n/2 \stackrel{d/dx}{\longrightarrow} 1/2} \qquad \gg \gg \qquad rac{1/n}{1/2} \qquad \gg \gg \qquad rac{2}{n} \longrightarrow 0 ext{ as } n o \infty$$

So the first term goes to zero, and the second (constant) term is the value of the limit. So the log limit is $\ln \frac{4}{5}$, and the limit (before taking logs) must be $e^{\ln \frac{4}{5}}$ (inverting the log using e^x) and this is $\frac{4}{5}$. Since $\frac{4}{5} < 1$, the root test also shows that the series converges absolutely.