W11 - Examples

Maclaurin series of e to the x

What is the Maclaurin series of $f(x) = e^x$?

Solution

Because $\frac{d}{dx}e^x = e^x$, we find that $f^{(n)}(x) = e^x$ for all n.

So $f^{(n)}(0)=e^0=1$ for all n. Therefore $a_n=\frac{1}{n!}$ for all n by the Derivative-Coefficient identity.

Thus:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Maclaurin series of cos x

Find the Maclaurin series representation of $\cos x$.

Solution

Use the Derivative-Coefficient Identity to solve for the coefficients:

$$a_n = rac{f^{(n)}(0)}{n!}$$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	a_n
0	$\cos x$	1	1
1	$-\sin x$	0	0
2	$-\cos x$	-1	-1/2
3	$\sin x$	0	0
4	$\cos x$	1	1/24
5	$-\sin x$	0	0
:	:	:	:

By studying the generating pattern of the coefficients, we find for the series:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

Maclaurin series from other Maclaurin series

- (a) Find the Maclaurin series of $\sin x$ using the Maclaurin series of $\cos x$.
- (b) Find the Maclaurin series of $f(x)=x^2e^{-5x}$ using the Maclaurin series of e^x .
- (c) Using (b), find the *value* of $f^{(22)}(0)$.

Solution

(a)

Proof Remember that $\frac{d}{dx}\cos x = -\sin x$

Differentiate $\cos x = 1 - rac{x^2}{2!} + rac{x^4}{4!} - rac{x^6}{6!} + \cdots$

Differentiate term-by-term:

$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \gg 0 - 2\frac{x^1}{2!} + 4\frac{x^3}{4!} - 6\frac{x^5}{6!} + \cdots$$
$$= -\frac{x^1}{1!} + \frac{x^3}{3!} - \frac{x^5}{5!} - \cdots$$

Take negative because $\sin x = -\frac{d}{dx}\cos x$:

$$\gg \gg x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Final answer is $\sin x = x - rac{x^3}{3!} + rac{x^5}{5!} - \cdots$

- (b)
- (1)

$${\mathscr O}$$
 Recall the series $e^u=1+rac{u^1}{1!}+rac{u^2}{2!}+rac{u^3}{3!}+\cdots$

Compute the series for e^{-5x} .

Set u = -5x:

$$1 + \frac{u^{1}}{1!} + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + \cdots$$

$$\gg 1 + \frac{(-5x)}{1!} + \frac{(-5x)^{2}}{2!} + \frac{(-5x)^{3}}{3!} + \cdots$$

(2) Compute the product.

Product of series:

$$x^{2}e^{-5x} \gg x^{2}\left(1 + \frac{(-5x)}{1!} + \frac{(-5x)^{2}}{2!} + \frac{(-5x)^{3}}{3!} + \cdots\right)$$

$$\gg x^{2} - 5x^{3} + \frac{25}{2}x^{4} - \frac{125}{3!}x^{5} + \cdots$$

$$\gg \sum_{r=0}^{\infty} (-1)^{n} \frac{5^{n}x^{n+2}}{n!}$$

- (c)
- (1)

\triangle Derivatives at x = 0 are calculable from series coefficients.

Suppose we know the series $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$

Then $f^{(n)}(0) = n! \cdot a_n$.

It may be easier to compute a_n for a given f(x) than to compute the derivative functions $f^{(n)}(x)$ and then evaluate them.

(2) Compute a_{22} .

Write the series such that it reveals the coefficients:

$$\sum_{n=0}^{\infty} (-1)^n \frac{5^n x^{n+2}}{n!} \qquad \gg \gg \qquad \sum_{n=0}^{\infty} \left((-1)^n \frac{5^n}{n!} \right) x^{n+2}$$

$$\implies \qquad a_{n+2} = (-1)^n \frac{5^n}{n!}$$

 \mathscr{O} Coefficient with a_{n+2} corresponds to the term with x^{n+2} , not necessarily the $(n+2)^{\text{th}}$ term (e.g. if the first term is x^2 as here).

Compute a_{22} :

$$a_{22} = (-1)^{20} \frac{5^{20}}{20!}$$
 $\gg \gg$ $5^{20} \frac{1}{20!}$

(3) Compute $f^{(22)}(0)$.

Use Derivative-Coefficient Identity:

$$f^{(22)}(0) = 22! \cdot a_{22}$$
 $\gg 5^{20} \cdot \frac{22!}{20!} \gg 5^{20} \cdot 22 \cdot 21$

Computing a Taylor series

Find the first five terms of the Taylor series of $f(x) = \sqrt{x+1}$ centered at c = 3.

Solution

A Taylor series is just a Maclaurin series that isn't centered at c = 0.

The general format looks like this:

$$f(x) = a_0 + a_1(x-c) + a_2(x-c)^2 + a_3(x-c)^3 + \cdots$$

The coefficients satisfy $a_n = \frac{f^{(n)}(c)}{n!}$. (Notice the c.)

We find the coefficients by computing the derivatives and evaluating at x = 3:

$$\begin{split} f(x) &= (x+1)^{1/2}, & f(3) &= 2 \\ f'(x) &= \frac{1}{2}(x+1)^{-1/2}, & f'(3) &= \frac{1}{4} \\ f''(x) &= -\frac{1}{4}(x+1)^{-3/2}, & f''(3) &= -\frac{1}{32} \\ f'''(x) &= \frac{3}{8}(x+1)^{-5/2}, & f'''(3) &= \frac{3}{256} \\ f^{(4)}(x) &= -\frac{15}{16}(x+1)^{-7/2}, & f^{(4)}(3) &= -\frac{15}{2048} \end{split}$$

By dividing by n! we can write out the first terms of the series:

$$f(x) = \sqrt{x+1}$$

$$= 2 + \frac{1}{4}(x-3) - \frac{1}{64}(x-3)^2 + \frac{1}{512}(x-3)^3 - \frac{5}{16.384}(x-3)^4 + \cdots$$

Taylor polynomial approximations

Let $f(x) = \sin x$ and let $T_n(x)$ be the Taylor polynomials expanded around c = 0.

By considering the alternating series error bound, find the first n for which $T_n(0.02)$ must have error less than 10^{-6} .

Solution

(1) Write the Maclaurin series of $\sin x$ because we are expanding around c = 0.

Alternating sign, odd function:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

(2)

⚠ Notice this series is alternating, so AST error bound formula applies.

AST error bound formula is:

$$|E_n| \leq a_{n+1}$$

Here the series is $S = a_0 - a_1 + a_2 - a_3 + \cdots$ and $E_n = S - S_n$ is the error.

Notice that x = 0.02 is part of the terms a_i in this formula.

(3) Implement error bound to set up equation for n.

Find n such that $a_{n+1} \leq 10^{-6}$, and therefore by the AST error bound formula:

$$|E_n| \le a_{n+1} \le 10^{-6}$$

Plug in x = 0.02.

From the series of $\sin x$ we obtain for a_{2n+1} :

$$a_{2n+1} = rac{0.02^{2n+1}}{(2n+1)!}$$

We seek the first time it happens that $a_{2n+1} \leq 10^{-6}$.

(4) Solve for the first time $a_{2n+1} \leq 10^{-6}$.

Equations to solve:

$$rac{0.02^{2n+1}}{(2n+1)!} \leq 10^{-6} \qquad ext{but:} \quad rac{0.02^{2(n-1)+1}}{(2(n-1)+1)!}
ot \leq 10^{-6}$$

Method: list the values:

$$rac{0.02^1}{1!} = 0.02, \qquad rac{0.02^3}{3!} pprox 1.33 imes 10^{-6},$$

$$rac{0.02^5}{5!}pprox 2.67 imes 10^{-11}, \qquad \dots$$

The first time a_{2n+1} is below 10^{-6} happens when 2n+1=5.

(5) Interpret result and state the answer.

When 2n + 1 = 5, the term $\frac{x^{2n+1}}{(2n+1)!}$ at x = 0.02 is less than 10^{-6} .

Therefore the sum of prior terms is accurate to an error of less than 10^{-6} .

The sum of prior terms equals $T_4(0.02)$.

Since $T_4(x) = T_3(x)$ because there is no x^4 term, the same sum is $T_3(0.02)$.

The final answer is n = 3.

 \mathscr{O} It would be wrong to infer at the beginning that the answer is 5, or to solve 2n+1=5 to get n=2.

Taylor polynomials to approximate a definite integral

Approximate $\int_0^{0.3} e^{-x^2} dx$ using a Taylor polynomial with an error no greater than 10^{-5} .

Solution

(1) Write the series of the integrand.

Plug $u = -x^2$ into the series of e^u :

$$e^u = 1 + \frac{u}{1!} + \frac{u^2}{2!} + \cdots$$

$$\gg \gg \qquad e^{-x^2} = 1 - rac{1}{2!} x^2 + rac{1}{4!} x^4 - rac{1}{6!} x^6 + \cdots$$

(2) Compute definite integral by terms.

Antiderivative by terms:

$$\int 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots dx$$

$$\gg \gg x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots$$

Plug in bounds for definite integral:

$$\int_0^{0.3} e^{-x^2} dx \qquad \gg \gg \qquad x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \frac{1}{7!} x^7 + \dots \Big|_0^{0.3}$$

$$\gg \gg \qquad 0.3 - \frac{0.3^3}{3!} + \frac{0.3^5}{5!} - \frac{0.3^7}{7!} + \dots$$

(3) Notice AST, apply error formula.

Compute some terms:

$$rac{0.3^3}{3!}pprox 0.0045, \qquad rac{0.3^5}{5!}pprox 2.0 imes 10^{-5}, \qquad rac{0.3^7}{7!}pprox 4.34 imes 10^{-8}$$

So we can guarantee an error less than 4.34×10^{-5} by summing the first terms through $\frac{0.3^5}{5!}$.

Final answer is
$$0.3 - \frac{0.3^3}{3!} + \frac{0.3^5}{5!} \approx 0.291243$$
.