
W11 - Examples
Maclaurin series of e to the x

Maclaurin series of cos x

Maclaurin series from other Maclaurin series

What is the Maclaurin series of f(x) = ex?

Solution

Because d

dx
ex = ex, we find that f (n)(x) = ex for all n.

So f (n)(0) = e0 = 1 for all n. Therefore an =
1
n!

 for all n by the Derivative-Coefficient identity.

Thus:

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ⋯ =

∞

∑
n=0

xn

n!

Find the Maclaurin series representation of cosx.

Solution

Use the Derivative-Coefficient Identity to solve for the coefficients:

an =
f (n)(0)
n!

n f (n)(x) f (n)(0) an

0 cosx 1 1

1 − sinx 0 0

2 − cosx −1 −1/2

3 sinx 0 0

4 cosx 1 1/24

5 − sinx 0 0

⋮ ⋮ ⋮ ⋮

By studying the generating pattern of the coefficients, we find for the series:

cosx = 1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n

(2n)!

(a) Find the Maclaurin series of sinx using the Maclaurin series of cosx.

(b) Find the Maclaurin series of f(x) = x2e−5x using the Maclaurin series of ex.

(c) Using (b), find the value of f (22)(0).
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Solution

(a)

Differentiate cosx = 1 − x2

2! + x4

4! − x6

6! + ⋯

Differentiate term-by-term:

Take negative because sinx = − d
dx cosx:

≫≫ x −
x3

3!
+

x5

5!
−

x7

7!
+ ⋯

Final answer is sinx = x − x3

3! + x5

5! − ⋯

(b)

(1)

Compute the series for e−5x.

Set u = −5x:

(2) Compute the product.

Product of series:

(c)

(1)

Suppose we know the series f(x) = a0 + a1x + a2x
2 + a3x

3 + ⋯

Remember that d

dx
cosx = − sinx

1 −
x2

2!
+

x4

4!
−

x6

6!
+ ⋯ ≫≫ 0 − 2

x1

2!
+ 4

x3

4!
− 6

x5

6!
+ ⋯

= −
x1

1!
+

x3

3!
−

x5

5!
− ⋯

Recall the series eu = 1 + u
1

1!
+ u

2

2!
+ u

3

3!
+ ⋯

1 +
u1

1!
+

u2

2!
+

u3

3!
+ ⋯

≫≫ 1 +
(−5x)

1!
+

(−5x)2

2!
+

(−5x)3

3!
+ ⋯

x2e−5x ≫≫ x2 (1 +
(−5x)

1!
+

(−5x)2

2!
+

(−5x)3

3!
+ ⋯)

≫≫ x2 − 5x3 +
25
2
x4 −

125
3!

x5 + ⋯

≫≫
∞

∑
n=0

(−1)n
5nxn+2

n!

Derivatives at x = 0 are calculable from series coefficients.
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Computing a Taylor series

Then f (n)(0) = n! ⋅ an.

It may be easier to compute an for a given f(x) than to compute the derivative functions f (n)(x) and then evaluate them.

(2) Compute a22.

Write the series such that it reveals the coefficients:

Compute a22:

a22 = (−1)20 520

20!
≫≫ 520 1

20!

(3) Compute f (22)(0).

Use Derivative-Coefficient Identity:

∞

∑
n=0

(−1)n
5nxn+2

n!
≫≫

∞

∑
n=0

((−1)n
5n

n!
)xn+2

⟹ an+2 = (−1)n
5n

n!

Coefficient with an+2 corresponds to the term with xn+2, not necessarily the (n + 2)th term (e.g. if the first
term is x2 as here).

f (22)(0) = 22! ⋅ a22

≫≫ 520 ⋅
22!
20!

≫≫ 520 ⋅ 22 ⋅ 21

Find the first five terms of the Taylor series of f(x) = √x + 1 centered at c = 3.

Solution

A Taylor series is just a Maclaurin series that isn’t centered at c = 0.

The general format looks like this:

f(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + ⋯

The coefficients satisfy an = f (n)(c)
n! . (Notice the c.)

We find the coefficients by computing the derivatives and evaluating at x = 3:

f(x) = (x + 1)1/2, f(3) = 2

f ′(x) =
1
2

(x + 1)−1/2, f ′(3) =
1
4

f ′′(x) = −
1
4

(x + 1)−3/2, f ′′(3) = −
1

32

f ′′′(x) =
3
8

(x + 1)−5/2, f ′′′(3) =
3

256

f (4)(x) = −
15
16

(x + 1)−7/2, f (4)(3) = −
15

2048
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Taylor polynomial approximations

By dividing by n! we can write out the first terms of the series:

f(x) = √x + 1

= 2 +
1
4

(x − 3) −
1
64

(x − 3)2 +
1

512
(x − 3)3 −

5
16, 384

(x − 3)4 + ⋯

Let f(x) = sinx and let Tn(x) be the Taylor polynomials expanded around c = 0.

By considering the alternating series error bound, find the first n for which Tn(0.02) must have error less than 10−6.

Solution

(1) Write the Maclaurin series of sinx because we are expanding around c = 0.

Alternating sign, odd function:

sinx = x −
x3

3!
+

x5

5!
−

x7

7!
+ ⋯ =

∞

∑
n=0

(−1)n
x2n+1

(2n + 1)!

(2)

AST error bound formula is:

|En| ≤ an+1

Here the series is S = a0 − a1 + a2 − a3 + ⋯  and En = S − Sn is the error.

(3) Implement error bound to set up equation for n.

Find n such that an+1 ≤ 10−6, and therefore by the AST error bound formula:

|En| ≤ an+1 ≤ 10−6

Plug in x = 0.02.

From the series of sinx we obtain for a2n+1:

a2n+1 =
0.022n+1

(2n + 1)!

We seek the first time it happens that a2n+1 ≤ 10−6.

(4) Solve for the first time a2n+1 ≤ 10−6.

Equations to solve:

Notice this series is alternating, so AST error bound formula applies.

Notice that x = 0.02 is part of the terms ai in this formula.
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Taylor polynomials to approximate a definite integral

0.022n+1

(2n + 1)!
≤ 10−6 but:

0.022(n−1)+1

(2(n − 1) + 1)!
≰ 10−6

Method: list the values:

The first time a2n+1 is below 10−6 happens when 2n + 1 = 5.

(5) Interpret result and state the answer.

When 2n + 1 = 5, the term x2n+1

(2n + 1)!
 at x = 0.02 is less than 10−6.

Therefore the sum of prior terms is accurate to an error of less than 10−6.

The sum of prior terms equals T4(0.02).

Since T4(x) = T3(x) because there is no x4 term, the same sum is T3(0.02).

The final answer is n = 3.

0.021

1!
= 0.02,

0.023

3!
≈ 1.33 × 10−6,

0.025

5!
≈ 2.67 × 10−11, …

It would be wrong to infer at the beginning that the answer is 5, or to solve 2n + 1 = 5 to get n = 2.

Approximate ∫
0.3

0
e−x2

dx using a Taylor polynomial with an error no greater than 10−5.

Solution

(1) Write the series of the integrand.

Plug u = −x2 into the series of eu:

(2) Compute definite integral by terms.

Antiderivative by terms:

Plug in bounds for definite integral:

eu = 1 +
u

1!
+

u2

2!
+ ⋯

≫≫ e−x2
= 1 −

1
2!
x2 +

1
4!
x4 −

1
6!
x6 + ⋯

∫ 1 −
1
2!
x2 +

1
4!
x4 −

1
6!
x6 + ⋯ dx

≫≫ x −
1
3!
x3 +

1
5!
x5 −

1
7!
x7 + ⋯
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(3) Notice AST, apply error formula.

Compute some terms:

0.33

3!
≈ 0.0045,

0.35

5!
≈ 2.0 × 10−5,

0.37

7!
≈ 4.34 × 10−8

So we can guarantee an error less than 4.34 × 10−5 by summing the first terms through 0.35

5! .

Final answer is 0.3 −
0.33

3!
+

0.35

5!
≈ 0.291243.

∫
0.3

0
e−x2

dx ≫≫ x −
1
3!
x3 +

1
5!
x5 −

1
7!
x7 + ⋯

0.3

0

≫≫ 0.3 −
0.33

3!
+

0.35

5!
−

0.37

7!
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