1. Suppose a code must be created using 5 letters and 3 numerals. (There are 26 letters and 10 numerals.) Symbol order matters for codes.
(a) How many unique codes are possible if the 5 letters must come first and the 3 numerals last, and symbols <i>cannot</i> be repeated?
(b) How many unique codes are possible if any ordering pattern of 5 letters and 3 numerals is permitted, and symbols <i>cannot</i> be repeated?
(c) How many unique codes are possible if any ordering pattern of 5 letters and 3 numerals is permitted, and symbols <i>can</i> be repeated?

2. Box A has 2 blue and 3 green marbles. Box B has 2 blue and 5 green marbles. You toss a biased coin with $P(head) = 2/3$. If it lands heads, choose Box A; if tails, choose Box B. Then, you draw a marble from the chosen box.
(a) What is the probability that a blue marble will be drawn?
(b) If a blue marble is drawn, what is the probability that Box A was chosen?

3. Suppose a call center receives calls throughout the day at an average rate of 6 calls per hour according to a Poisson process.
(a) What is the probability that there are no calls between 9:00 and 9:30 AM?
(b) What is the probability that the 14th call of the day comes in 20 minutes or less after the 11th call?

4. The automatic opening device of a cargo parachute has been designed to open when the parachute is 200m above ground. The opening altitude has a Normal distribution with a mean value of 200m and standard deviation of $40m$. Equipment damage will occur if the parachute opens at an altitude of less than $100m$.
(a) What is the probability that there is equipment damage to the payload of a parachute?
(b) If 100 cargo parachutes are dropped, find the probability that more than one parachute will open at 100m or less, leading to damaged cargo.

5. In a digital transmission, the probability that a bit has high, moderate, and low distortion is 0.01,
0.03, and 0.96 respectively. Suppose that 2 bits are transmitted and that the distortion of each bit is
independent of the other. Let X and Y denote the number of bits with high and moderate distortion,
respectively, out of the 2 transmitted bits.

a) Find $P_{X,Y}(x,y)$, the joint PMF.

(b) Find $\hat{x}_M(y)$, the *exact* minimal mean-square error estimate of X given Y = y.

(c) Find $\hat{X}_L(Y)$, the linear minimal mean-square error estimator function for X given Y.

- 6. Darts are thrown at a triangular dart board and are guaranteed to land somewhere on the board. Let (X, Y) be the coordinates (as random variables) of the landing point, and $0 \le 2y \le x \le 1$. So the three vertices of the dart board are (0, 0), (1, 0) and (1, 0.5).
- (a) Suppose the joint PDF of *X* and *Y* is given by:

$$f_{X,Y}(x,y) = \left\{ egin{array}{ll} c & 0 \leq 2y \leq x \leq 1 \\ 0 & otherwise \end{array} \right.$$

What is the value of c?

(b) Are X and Y independent? (Justify your answer.)

(c) It happens that your chance of winning a prize improves as the landing point approaches the upper-right corner (x = 1, y = 0.5) of the triangle. Find the PDF of W = max(X, Y).

(The max function picks the larger of the two values x and y, and assigns it to w.)

7. Let the continuous RV X represent the weight of a newborn baby in pounds. We can assume that P(X < 0) = 0 and P(X < 20) = 1. Let F(x) be the CDF and f(x) the PDF of X. Which of the following conclusions are NOT justifiable with the information given? (Circle all such statements.)

- (a) F(x) = 0 for all $x \le 0$.
- (b) F(x) = 1 for all $x \ge 20$.
- (c) The area under the graph of F(x) between x = 0 and x = 20 is 1.
- (d) F(x) is a non-decreasing function between x = 0 and x = 20.
- (e) No portion of the graph of f(x) can lie below the x-axis.
- (f) The height of f(x) cannot exceed 1 between x = 0 and x = 20.

8. A company sells cars at an average price of \$24,550 with standard deviation \$158 but an unknown distribution. Determine which of the following probabilities can be approximately computed by applying the Central Limit Theorem. (Circle all correct items.)

- (a) The probability that a randomly selected car will sell for more than \$25,000.
- (b) The probability that a randomly selected shipment of 100 cars from this company sells for less than a total of \$2,500,000.
- (c) The probability that the average car price in a randomly selected shipment of 100 cars will be less than \$25,000.

9. You roll a fair die 200 times and count the total number of times you get a six. What is the probability that you will get <u>35 or more</u> sixes?

(Hint: You may consider using the Central Limit Theorem. You should use the De Moivre-Laplace Continuity Correction Formula / Refined Approximation Method if appropriate.)

10. You roll a fair die. Let N denote the number rolled (N = 1, 2, 3, 4, 5, 6). Now toss a fair coin N times. Let S be the number of heads observed.

What is E(S)?

11. A signal of strength X is emitted by one of two beacons, H_0 or H_1 . The sample space of X is [0,1]. The <u>CDF</u> of X, conditioned on the emitting beacon, is:

$$F_{X|H0}(x) = 1 - (1 - x)^3$$
, $0 \le x \le 1$
 $F_{X|H1}(x) = x^3$, $0 \le x \le 1$

The prior probability of beacon H_0 being activated is 0.20. Assuming that we want to minimize the total probability of error, choose a hypothesis test type, and state the decision rule clearly indicating the decision threshold and the two acceptance sets.

Use this page if you need extra space for a problem. Make a note on that page; otherwise work on this page will not be graded.