W02 Notes

W02 Notes

Bayes’ Theorem

01 Theory

g Bayes’ Theorem

For any events A and B:

PlA| Bl

PIB| )= PIB —po

I\ Bayes’ Theorem is sometimes called Bayes’ Rule.

Start with the observation that AB = BA, or event “A AND B” equals event “B AND A”.
Apply the multiplication rule to each of order:
P[AB] = P[A] - P[B| 4]
P[BA] = P|B]- P[A| B]
Equate them and rearrange:
P[AB] = P[BA] >>» P[A]-P[B|A]=P|B]-P[A| B

P[A| B

>> P[B|A]=P[B]- PLA]

The main application of Bayes’ Theorem is to calculate P[A | B] when it is easy to calculate P[B | 4]
from the problem setup. Often this occurs in multi-stage experiments where event A describes

outcomes of an intermediate stage.

Note: these notes use alphabetical order A, B as a mnemonic for temporal or logical order, i.e. that A
comes first in time, or that otherwise that A is the prior conditional from which it is easier to calculate
B.

02 Illustration

‘= Example - Bayes’ Theorem - COVID tests
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Assume that 0.5% of people have COVID. Suppose a COVID test gives a (true) positive on 96% of
patients who have COVID, but gives a (false) positive on 2% of patients who do not have COVID.
Bob tests positive. What is the probability that Bob has COVID?

Solution

(1) Label events.

Event Ap: Bob is actually positive for COVID
Event Ay: Bob is actually negative; note Ay = A%
Event Tp: Bob tests positive

Event T'v: Bob tests negative; note Ty = T§

(2) Identify knowns.

Know: P[Tp | Ap] = 96%

Know: P[Tp | An] =2%

Know: P[Ap] = 0.5% and therefore P[An]=99.5%

We seek: P[Ap | Tp]

)
2 Translate Bayes’ Theorem.

Using A = Tp and B = Ap in the formula:

P[Tp | Ap|

P[Ap | Tp] = P[Ap] PITr]

We know all values on the right except P[Tp]

4)
/\ Use Division into Cases.

Observe:
Tp=TpNAp U TpNAN

Division into Cases yields:
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P[Tp] = P[Ap]- P[Tp | Ap| + P[AN] - P[Tp | An]

Z Important to notice this technique!

It is a common element of Bayes’ Theorem application problems.

It is frequently needed for the denominator.

Plug in data and compute:

5 96 995 2

To00 100 " 1000 o0 > 007

>> P[Tp| =

(5) Compute answer.

Plug in and compute:

P[Tp | Ap]
P[Ap | Tp| = P|Ap] . — 2
[Ap | Tp] [Ap] PITs]
0.005
> 0.96-m > ~19%

Some people find the low number surprising. In order to repair your intuition, think about it
like this: roughly 2.5% of tests are positive, with roughly 2% coming from false positives, and
roughly 0.5% from #rue positives. The true ones make up only 1/5 of the positive results!

(This rough approximation is by assuming 96% = 100%.)
If two tests both come back positive, the odds of COVID are now 98%.

If only people with symptoms are tested, so that, say, 20% of those tested have COVID, that
is, P[Ap | Tp] = 20%, then one positive test implies a COVID probability of 92%.

Z! Exercise - Bayes’ Theorem and Multiplication: Inferring

There are marbles in bins in a room:

Bin 1 holds 7 red and 5 green marbles.
Bin 2 holds 4 red and 3 green marbles.

Your friend goes in the room, shuts the door, and selects a random bin, then draws a random
marble. (Equal odds for each bin, then equal odds for each marble in that bin.) He comes out and

shows you a red marble.
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What is the probability that this red marble was taken from Bin 1?

Solution

Independence

Two events are independent when information about one of them does not change our probability
estimate for the other. Mathematically, there are three ways to express this fact:

Events A and B are independent when these (logically equivalent) equations hold:

P[B| A] = P[B]
P[A| B] = P[4
P[BA] = P|B| - P|A]

2 The last equation is symmetric in A and B.

Check: BA = AB and P[B]- P[A] = P[A]- P[B]

This symmetric version is the preferred definition of the concept.

A collection of events Ay, ..., A, is mutually independent when every subcollection 4;,, ..., 4;,
satisfies:

PlA;, --- Ai,] = P[A]--- P[4;]

A potentially weaker condition for a collection A, ..., A, is called pairwise independence, which
holds when all 2-member subcollections are independent:

One could also define 3-member independence, or n-member independence. Plain ‘independence’
means any-member independence.

Z! Exercise - Independence and complements
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Prove that these are logically equivalent statements:

A and B are independent
A and B¢ are independent

A€ and B¢ are independent
Make sure you demonstrate both directions of each equivalency.

Solution

‘= Example - Checking independence by hand

A bin contains 4 red and 7 green marbles. Two marbles are drawn.

Let R; be the event that the first marble is red, and let G2 be the event that the second marble is

green.

(a) Show that R; and G, are independent if the marbles are drawn with replacement.

(b) Show that R; and G, are not independent if the marbles are drawn without replacement.
Solution
(a) With replacement.
(1) Identify knowns.
Know: P[Ri] = +

Know: P[G,] = &

(2) Compute both sides of independence relation.

Relation is P[R;G5] = P[R,] - P|G,]

Right side is % . %

For P|R;G3), have 4 - 7 ways to get R;Gs, and 112 total outcomes.
So left side is %, which equals the right side.

(b) Without replacement.

(1) Identify knowns.

Know: P[Ri] = += and therefore P[RS| = -~

We seek: P[Gs5] and P[R;G5]
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(2) Find P[G>] using Division into Cases.
Division into cases:
Gy=G,NR; | J Gan RS
Therefore:
P[G,] = P[R,]- P[G; | Ri] + P[R{] - P[G; | R{]
Find these by counting and compute:

4 7 7T 6 70
> P[Gz]—ﬁ-1—0+—1~ﬁ >> 0

(3) Find P[R;G,] using Multiplication rule.

Multiplication rule (implicitly used above already):

4 7 28
P[R1G2] = P[R1]-P[G2 | R1] >>»> —-— >>» —

11 10 110
(4) Compare both sides.
Left side: P[R,G,] = %
Whereas, right side:
4 70 28
P .P .
[Bal - PlG] = 13- 795 = 1o

But 2 # 2 s0 P[R1G>] # P[R1] - P|G>)] and they are not independent.

Tree diagrams

A tree diagram depicts the components of a multi-stage experiment. Nodes, or branch points,

represent sources of randomness.

0.8 A eBiA 0.24
B ) N eB;N 0.06
A

0.9 eB,A  0.36
B> <

0.1 eB,N  0.04
Bs ﬁi eB3;A  0.18

0.

eBzN 0.12
An outcome of the experiment is represented by a pathway taken from the root (left-most node) to a leaf

(right-most node). The branch chosen at a given node junction represents the outcome of the “sub-

Z 2
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experiment” constituting that branch point. So a pathway encodes the outcomes of all sub-experiments.

Each branch from a node is labeled with a probability number. This is the probability that the sub-
experiment of that node has the outcome of that branch.

The probability label on some branch is the conditional probability of that branch, assuming the
pathway from root to prior node.

In the example: 0.8 = P[A| By].

Therefore, branch labels from given node sum to 1. (Law of Total Probability)
The probability of a given (overall) outcome is the product of the probabilities on each branch of the
pathway to that outcome.

Makes sense, because (e.g.): P[AB;] = P[A]- P[B; | 4]

More generally: remember that (e.g.): P[ABCD] = P[ABC]- P[D | ABC]

This overall outcome probability may be written at the leaf.

One can also use a tree diagram to remember quickly how to calculate certain probabilities.

For example, what is P[4] in the diagram?
Answer: add up the pathway probabilities (leaf numbers) terminating in A. That makes
0.24 +0.36 +0.18 = 0.78

For example, what is P[B; | N|?
Answer: divide the leaf probability of B1N by the total probability of N. That makes:

0.06

—_——— x~0.27
0.06 4+ 0.04 + 0.12

P[B; | N] =

‘= Example - Tree diagrams: Marble transferred, marble drawn

Setup:

Bin 1 holds five red and four green marbles.

Bin 2 holds four red and five green marbles.
Experiment:

You take a random marble from Bin 1 and put it in Bin 2 and shake Bin 2.

Then you draw a random marble from Bin 2 and look at it.
Questions:

(a) What is the probability you draw a red marble?
(b) Supposing that you drew a red marble, what is the probability that a red marble was

transferred?
Solution

(1) Construct the tree diagram.
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Identify sub-experiments, label events, compute probabilities:

(2) For (a), compute P[Dg].

Add up leaf numbers for Dg at leaf:

25 16 41
PDgl=—+— = —
90 90 90
(3) For (b), compute P[Tr | Dg].
Conditional probability:
P[TrDg)
P[Tg | Dg]| = ———
(Tr | Dg] PlDx]
Plug in data and compute:
= 25/90 S 25
41/90 41

Interpretation: mass of desired pathway over mass of possible pathways.

Counting
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In many “games of chance”, it is assumed by symmetry principles that all outcomes are equally likely.

From this assumption we infer the rule for P[—|:

_ A

PlAI=1g

In words: the probability of event A is the number of outcomes in A divided by the number of possible

outcomes.

When this formula applies, it is important to be able to count total outcomes, as well as outcomes

satisfying various conditions.

Permutations count the number of ordered lists one can form from some items. For a list of r
items taken from a total collection of n, the number of permutations is:

n!
(n—r)!

To see where this comes from:
There are n choices for the first item, then n — 1 for the second, then ... then n — r + 1 for the r** item.
So the number is n(n — 1)(n — 2) - - - (n — r + 1). Observe:

n! nn—1)(n—-2)---(n—r+1)(n—r)(n—r—1)---1

(n—r)! (n=r)(n—r—-1)---1

>>» nn-1)n-2)---(n—7r+1)

Combinations count the number of ses (ignoring order) one can form from some items. We define

()=

This counts the number of sets of r distinct elements taken from a total collection of n items.

a notation for it like this:

Another name for combinations is the binomial coefficient.

This formula can be derived from the formula for permutations. The possible permutations can be
partitioned into combinations: each combination gives a set, and by specifying an ordering of elements
in the set, we get a permutation. For a set of r elements taken from n items, there are r! ways to put
them into a specific order. So the number of permutations must be a factor of r! greater than the

number of combinations.
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This notation, (n) , 1s also called the binomial coefficient because it provides the coefficients of a
r
binomial expansion:
" /n
n __ n—i, i
@ =3 (7)o
i=1
For example:
(z +y)* = 2 + 423y + 62%9% + 4xy® + o*

There are also ‘higher’ combinations:

The general multinomial coefficient is defined by the formula:

< n ) _ n!
71,7253 Tk 7'1!7’2!"'7'k!

wherer; e Nandry +ry+ -+ + 7, = n.

The multinomial coefficient measures the number of ways to partition n items into sets with sizes
71, T2, - .., Tk, Tespectively.

5
3,2
with k£ > 2, we have new values. They correspond to the coefficients in multinomial expansions. For

Notice that ( ) = <3> so we already defined these values (k = 2) with binomial coefficients. But

example k = 3 gives coefficients for (z + y + 2)™.

= Exercise - Combinations: Counting teams with Cooper

A team of 3 student volunteers is formed at random from a class of 40. What is the probability that
Cooper is on the team?

Solution

:= Example - Combinations: Groups with Haley and Hugo

The class has 40 students. Suppose the professor chooses 3 students Wednesday at random, and
again 3 on Friday. What is the probability that Haley is chosen today and Hugo on Friday?

Solution

(1) Count total outcomes.
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Have (%) possible groups chosen Wednesday.

Have (4??) possible groups chosen Friday.

Therefore (430) X (430) possible groups in total.

(2) Count desired outcomes.

Groups of 3 with Haley are same as groups of 2 taken from others.
Therefore have (329) groups that contain Haley.

Have (%) groups that contain Hugo.

Therefore (329) X (3,3) total desired outcomes.

(3) Compute probability.
Let E label the desired event.

Use formula:

|E|
Bl =
Therefore:
39) o (39

:= Example - Counting VA license plates
A VA license plate has three letters (with no I, O, or Q) followed by four numerals. A random plate
is seen on the road.

(a) What is the probability that the numerals are in increasing order?

(b) What is the probability that at least one number is repeated?

Solution

(a)

(1) Count ways to have 4 numerals in increasing order.
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Any four distinct numerals have a single order that’s increasing.

10 .
There are < 4 ) ways to choose 4 numerals from 10 options.

(2) Count ways to have 3 letters in order except I, O, Q.
26 total letters, 3 excluded, thus 23 options.

Repetition allowed, thus 23 - 23 - 23 = 232 possibilities.

(3) Count total plates with increasing numerals.

10
233.
o (%)

Multiply the options:

(4) Count total plates.
Have 23 - 23 - 23 options for letters.
Have 10-10 - 10 - 10 options for numbers.

Thus 23% - 10 possible plates.

(5) Compute probability.
Let F label the event that a plate has increasing numerals.

Use the formula:

|E|
PIE] = =L
[E] 5]
Therefore:
2% - () a0
PIE 4 4161
Bl >> 233.104 > 10000
(b)

(1) Count plates with at least one number repeated.

2 “At least” is hard! Try complement: “no repeats”.

Let E€ be event that no numbers are repeated. All distinct.
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Count possibilities:

|E¢| =23-23-23-10-9-8-7
Total license plates is still 232 - 10%.
Therefore, license plates with at least one number repeated:

|B| = |S] - |E]

s> 23%.100-23%-10-9-8-7 >> 60348320

(2) Compute probability.

Desired outcomes over total outcomes:

E 60348320
Boss 1 >> 049
1] 23310

Z! Counting out 4 teams

A board game requires 4 teams of players. How many configurations of teams are there out of a

total of 17 players if the number of players per team is 4, 4, 4, 5, respectively.

Solutions
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