
W03 Notes
Repeated trials

01 Theory

A simple type of trial, called a Bernoulli trial, has two possible outcomes, 1 and 0, or success
and failure, or T  and F . A sequence of repeated Bernoulli trials is called a Bernoulli process.

P [TFFTTF ] = P [T ] ⋅ P [F ] ⋅ P [F ] ⋅ P [T ] ⋅ P [T ] ⋅ P [F ]

P [TFFTTF ] ≫≫ pqqppq ≫≫ p3q3

A more complex trial may have three outcomes, A, B, and C.

P [ABBACABCA] ≫≫ pqqprpqrp ≫≫ p4q3r2

Repeated trials

When a single experiment type is repeated many times, and we assume each instance is
independent of the others, we say it is a sequence of repeated trials or independent
trials.

The probability of any sequence of outcomes is derived using independence together with the
probabilities of outcomes of each trial.

Write sequences like TFFTTF  for the outcomes of repeated trials of this type.
Independence implies

Write p = P [T ] and q = P [F ], and because these are all outcomes (exclusive and exhaustive),
we have q = 1 − p. Then:

This gives a formula for the probability of any sequence of these trials.

Write sequences like ABBACABCA for the outcomes.
Label p = P [A] and q = P [B] and r = P [C]. We must have p + q + r = 1.
Independence implies

This gives a formula for the probability of any sequence of these trials.
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02 Illustration

Reliability

Let S stand for the sum of successes in some Bernoulli process. So, for example, “S = 3” stands for
the event that the number of successes is exactly 3. The probabilities of S events follow a
binomial distribution.

Suppose a coin is biased with P [H] = 20%, and H is ‘success’. Flip the coin 20 times. Then:

P [S = 3] ≫≫ (20

3
) ⋅ (0.2)3 ⋅ (0.8)17

Each outcome with exactly 3 heads and 17 tails has probability (0.2)3 ⋅ (0.8)17. The number of such
outcomes is the number of ways to choose 3 of the flips to be heads out of the 20 total flips.

The probability of at least 18 heads would then be:

With three possible outcomes, A, B, and C, we can write sum variables like SA which counts the
number of A outcomes, and SB and SC similarly. The probabilities of events like
“(SA, SB, SC) = (2, 3, 5)” follow a multinomial distribution.

P [S ≥ 18] ≫≫ P [S = 18] + P [S = 19] + P [S = 20]

≫≫ (20

18
) ⋅ (0.2)18 ⋅ (0.8)2 + (20

19
) ⋅ (0.2)19 ⋅ (0.8)1 + (20

20
) ⋅ (0.2)20 ⋅ (0.8)0

Example - Multinomial: Soft drinks preferred

Folks coming to a party prefer Coke (55%), Pepsi (25%), or Dew (20%). If 20 people order
drinks in sequence, what is the probability that exactly 12 have Coke and 5 have Pepsi and
3 have Dew?

Solution

The multinomial coefficient ( 20

12, 5, 3
) gives the number of ways to assign 20 people into bins

according to preferences matching the given numbers, C = 12 and P = 5 and D = 3.

Each such assignment is one sequence of outcomes. All such sequences have probability
(0.55)12 ⋅ (0.25)5 ⋅ (0.2)3.

The answer is therefore:

( 20

12, 5, 3
) ⋅ (0.55)12 ⋅ (0.25)5 ⋅ (0.2)3 ≫≫

20!

12! 5! 3!
⋅ (0.55)12 ⋅ (0.25)5 ⋅ (0.2)3
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03 Theory

Consider some process schematically with components in series and components in parallel:

Success for a series of components requires success of each member.

Failure for parallel components requires failure of each member.

For series components:

P [W ] = P [W1W2W3] = P [W1] ⋅ P [W2] ⋅ P [W3]

For parallel components:

If P [Wi] = p for all components i, then:

To analyze a complex diagram of series and parallel components, bundle each:

Each component has a probability of success or failure.
Event Wi indicates ‘success’ of that component (same name).
Then P [Wi] is the probability of Wi succeeding.

Series components rely on each other.
Success of the whole is success of part 1 AND success of part 2 AND part 3, etc.

Parallel components represent redundancy.
Success of the whole is success of part 1 OR success of part 2 OR part 3, etc.

P [W c] = “failure” ≫≫ P [W c
1W

c
2W

c
3 ]

≫≫ (1 − P [W1])(1 − P [W2])(1 − P [W3])

Series components: P [W ] = p3

Parallel components: P [W ] = 1 − (1 − p)3

pure series set as a single compound component with its own success probability (the product)
pure parallel set as a single compound component with its own success probability (using the
failure formula)
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04 Illustration

This is like the analysis of resistors and inductors.

Example - Series, parallel, series

Suppose a process has internal components arranged like this:

Write Wi for the event that component i succeeds, and W c
i  for the event that it fails.

The success probabilities for each component are given in the chart:

1 2 3 4 5

92% 89% 95% 86% 91%

Find the probability that the entire system succeeds.

Solution

(1) Conjoin components 2 and 3 in series.

Compute:

P [W2W3] ≫≫ P [W2] ⋅ P [W3] ≫≫ (0.89) ⋅ (0.95) = 0.8455

Therefore:

P[(W2W3)c] ≫≫ 1 − 0.846 ≫≫ 0.1545

(2) Conjoin components (2-3) with 4 and 5 in parallel.

Compute for the complement (failure) first:

Flip back to success:

P[W2W3 ∪ W4 ∪ W5] ≫≫ 1 − 0.0019467 ≫≫ 0.9980533

P[(W2W3 ∪ W4 ∪ W5)c] ≫≫ P [(W2W3)c] ⋅ P [W c
4 ] ⋅ P [W c

5 ]

≫≫ (0.1545)(0.14)(0.09) ≫≫ 0.0019467
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Discrete random variables

05 Theory

(3) Conjoin components 1 with (2-3-4-5) in series.

Compute:

P[W1(W2W3 ∪ W4 ∪ W5)] ≫≫ (0.92)(0.9980533)

≫≫ 0.918209036 ≈ 91.82%

Note: The word ‘variable’ indicates that an RV outputs numbers.

Random variables can be formed from other random variables using mathematical operations on
the output numbers.

Given random variables X and Y , we can form these new ones:

1

2
(X + Y ), X ⋅ Y , cosX, X 2, etc.

Suppose s ∈ S is some particular outcome. Then, for example, (X + Y )(s) is by definition
X(s) + Y (s).

Random variables determine events.

Such events have probabilities. We write them like this:

P [X = a] ≫≫ P [X−1(a)]

This generalized to events where X lies in some range or set, for example:

P [a ≤ X < b], P[X ∈ {2, 4, 5, 6, 9}]

Random variable

A random variable (RV) X on a probability space (S,F ,P) is a function X : S → R.

So X assigns to each outcome a number.

Given a ∈ R, the event “X = a” is equal to the set X−1(a)

That is: the set of outcomes mapped to a by X
That is: the event “X took the value a”

W03 Notes

5 / 11

af://h2-11
af://h3-12


The axioms of probability translate into rules for these events.

For example, additivity leads to:

P [X < 0] + P [X = 0] + P [0 < X ≤ 3] + P [3 < X] = 1

A discrete random variable has probability concentrated at a discrete set of real numbers.

A continuous random variable has probability spread out over the space of real numbers.

For any RV, whether discrete or continuous, the distribution of probability is encoded by a
function:

A ‘discrete set’ means finite or countably infinite.
The distribution of probability is recorded using a probability mass function (PMF) that
assigns probabilities to each of the discrete real numbers.
Numbers with nonzero probability are called possible values.

PMF

The PMF function for X (a discrete RV) is defined by:

PX(k) := P [X = k]

for k ∈ R a possible value.

The distribution of probability is recorded using a probability density function (PDF)
which is integrated over intervals to determine probabilities.

PDF

The PDF function for Y  (a CRV) is written fY (x) for x ∈ R, and probabilities are calculated
like this:

P[a ≤ Y ≤ b] = ∫
b

a

fY (x) dx

CDF
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Notes:

The CDF of a discrete RV is always a stepwise increasing function. At each step up, the jump size
matches the PMF value there.

From this graph of FX(x):

we can infer the PMF values based on the jump sizes:

PX(−1) PX(0) PX(1) PX(2) PX(3) PX(4)

0 1/8 3/8 3/8 1/8 0

For a discrete RV, the CDF and the PMF can be calculated from each other using formulas.

The cumulative distribution function (CDF) for a random variable X is defined for all
x ∈ R by:

FX(x) = P [X ≤ x]

Sometimes the relation to X is omitted and one sees just “F(x).”
Sometimes the CDF is called, simply, “the distribution function” because:

The CDF works equally well for discrete and continuous RVs.

Not true for PMF (discrete only) or PDF (continuous only).
There are mixed cases (partly discrete, partly continuous) for which the CDF is essential.

PMF from CDF from PMF

Given a PMF PX(x), the CDF is determined by:

FX(x) = ∑
ki≤x

PX(ki)
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06 Illustration

where {k1, k2, …} is the set of possible values of X.

Given a CDF FX(x), the PMF is determined by:

PX(k) = FX(k) − lim
x→k−

FX(x) = “jump” at k

Example - PDF and CDF: Roll 2 dice

Roll two dice colored red and green. Let XR record the number of dots showing on the red
die, XG the number on the green die, and let S be a random variable giving the total number
of dots showing after the roll, namely S = XR + XG.

Solution

(1) Sample space.

Denote outcomes with ordered pairs of numbers (i, j), where i is the number showing on the
red die and j is the number on the green one.

Require that i, j ∈ N are integers satisfying 1 ≤ i, j ≤ 6.

Events are sets of distinct such pairs.

(2) Create chart of outcomes.

Chart:

(3) Definitions of XR, XG, and S.

Find the PMFs of XR and of XG and of S.
Find the CDF of S.
Find P [S = 8].
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We have XR(i, j) = i and XG(i, j) = j.

Therefore S(i, j) = i + j.

(4) Find PMF of XR.

Use variable n for each possible value of XR, so n = 1, 2, … , 6.

Find PXR
(n):

Therefore PXR
(n) = 1/6 for every n.

(5) Find PMF of XG.

Same as for XR:

PXG
(n) =

1

6
for all n

(6) Find PMF of S.

Find PS(n):

PS(n) ≫≫ P [S = n] ≫≫
|outcomes with sum n|

|all outcomes|

Count outcomes along diagonal lines in the chart.

Create table of PS(n):

Create bar chart of PS(n):

PXR
(n) ≫≫ P [XR = n]

≫≫
|outcomes with n on red|

|all outcomes|
≫≫

6

36
=

1

6
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Evaluate: P [S = 8] ≫≫ 5/36.

(7) Find CDF of S.

CDF definition:

FS(x) = P [S ≤ x]

Apply definition: add new PMF value at each increment:

FS(n) =

⎧⎪⎨⎪⎩0 x < 2
1/36 2 ≤ x < 3
3/36 3 ≤ x < 4
6/36 4 ≤ x < 5
10/36 5 ≤ x < 6
15/36 6 ≤ x < 7
21/36 7 ≤ x < 8
26/36 8 ≤ x < 9
30/36 9 ≤ x < 10
33/36 10 ≤ x < 11
35/36 11 ≤ x < 12
36/36 12 ≤ x

Example - Total heads count; binomial expansion of 1

A fair coin is flipped n times.

Let X be the random variable that counts the total number of heads in each sequence.

The PMF of X is given by:

PX(k) = (n
k
)( 1

2
)

n

Since the total probability must add to 1, we know this formula must hold:

Is this equation really true?

There is another way to view this equation: it is the binomial expansion (x + y)n where
x = 1

2
 and y = 1

2
:

1 = ∑
possible k

PX(k)

≫≫ 1 =
n

∑
k=0

(n
k
)( 1

2
)

n
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( 1

2
+

1

2
)

n

=
n

∑
k=0

(n
k
)( 1

2
)

n

Example - Life insurance payouts

A life insurance company has two clients, A and B, each with a policy that pays $100,000
upon death. Consider events D1 that the older client dies next year, and D2 that the younger
dies next year. Suppose P [D1] = 0.10 and P [D2] = 0.05.

Define a random variable X measuring the total money paid out next year in units of $1,000.
The possible values for X are 0, 100, 200. We calculate:

P [X = 0] ≫≫ P [Dc
1]P [Dc

2] = 0.95 ⋅ 0.90 = 0.86

P [X = 100] ≫≫ 0.05 ⋅ 0.90 + 0.95 ⋅ 0.10 = 0.14

P [X = 200] ≫≫ 0.05 ⋅ 0.10 = 0.005
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