
W05 Notes
Discrete families: summary

01 Theory

Bernoulli: 

Binomial: 

Geometric: 

Pascal: 

Poisson: 

Indicates a win.

Counts number of wins.

These are  times the Bernoulli numbers.

Counts discrete wait time until first win.

Counts discrete wait time until  win.

These are  times the Geometric numbers.

Counts “arrivals” during time interval.
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Function on a random variable

02 Theory

By composing any function  with a random variable  we obtain a new random
variable . The new one is called a derived random variable.

Notice: when applied to outcome :

The proofs of these formulas are tricky because we must relate the PDF or PMF of  to that of 
.

Notation

The derived random variable  may be written “ ”.

Expectation of derived variables

Discrete case:

(Here the sum is over all possible values  of , i.e. where .)

Continuous case:

 is the output of 
 is the output of 

Proof - Discrete case - Expectation of derived variable
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Thus variance ignores the offset and squares the scale factor. It is not linear!

Linearity of expectation

For constants  and :

For any  and  on the same probability model:

Exercise - Linearity of expectation

Using the definition of expectation, verify both linearity formulas for the discrete case.

Be careful!

Usually .

For example, usually .

We distribute  over sums but not products (unless the factors are independent).

Variance squares the scale factor

For constants  and :

Proof - Variance squares the scale factor
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03 Illustration

The data of all the moments collectively determines the probability distribution. This fact can be
very useful! In this way moments give an analogue of a series representation, and are sometimes
more useful than the PDF or CDF for encoding the distribution.

Extra - Moments

The  moment of  is defined as the expectation of :

Discrete case:

Continuous case:

A central moment of  is a moment of the variable :

Example - Function given by chart

Suppose that  in such a way that  and  and  and no other
values are mapped to .

1 2 3

4 1 87

Then:

And:

Therefore:

Variance of uniform random variable
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y = g(x) *

E2g(x1] = Z9)Px(n) = g(1)Pall + g(2)Px(2 + gpPl

---

SELX] + 2E[x] + 3



The uniform random variable  on  has distribution given by  when

.

(a) Find  using the shorter formula.

(b) Find  using “squaring the scale factor.”

(c) Find  directly.

Solution
(a)

(1) Compute density.

The density for  is:

(2) Compute  and  directly using integral formulas.

Compute :

Now compute :

(3) Find variance using short formula.

Plug in:

(b)

(1) “Squaring the scale factor” formula:
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04 Theory

(2) Plugging in:

(c)

(1) Density.

The variable  will have  the density spread over the interval .

Density is then:

(2) Plug into prior variance formula.

Use  and .

Get variance:

Simplify:

Exercise - Probabilities via CDF

Suppose the CDF of  is given by . Compute:

(a)   (b)   (c)   (d) 

Solution

Suppose we are given the PDF  of , a continuous RV.

What is the PDF , the derived variable given by composing  with ?
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05 Illustration

Therefore, if we know , we can find  using a 3-step process:

(1) Find , the CDF of , by integration:

Compute .

Now remember that .

(2) Find , the CDF of , by comparing conditions:

When  is monotone increasing, we have equivalent conditions:

(3) Find  by differentiating :

PDF of derived

The PDF of  is not (usually) equal to .

Relating PDF and CDF

When the CDF of  is differentiable, we have:

Example - PDF of derived from CDF

Suppose that .

(a) Find the PDF of .  (b) Find the PDF of .
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Continuous wait times

06 Theory

Solution

(a)

Formula:

Plug in:

(b)

By definition:

Since  is increasing, we know:

Therefore:

Then using differentiation:

Exponential variable

A random variable  is exponential, written , when  measures the wait time
until first arrival in a Poisson process with rate .

Exponential PDF:
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07 Illustration

Notice the coefficient  in . This ensures :

Notice the “tail probability” is a simple exponential decay:

(Compute an improper integral to verify this.)

Poisson is continuous analog of binomial
Exponential is continuous analog of geometric

Erlang variable

A random variable  is Erlang, written , when  measures the wait time
until  arrival in a Poisson process with rate .

Erlang PDF:

Erlang is continuous analog of Pascal

Example - Earthquake wait time

Suppose the San Andreas fault produces major earthquakes modeled by a Poisson process,
with an average of 1 major earthquake every 100 years.

(a) What is the probability that there will not be a major earthquake in the next 20 years?

(b) What is the probability that three earthquakes will strike within the next 20 years?

Solution

(a)
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08 Theory

Since the average wait time is 100 years, we set  earthquakes per year. Set
 and compute:

(b)

The same Poisson process has the same  earthquakes per year. Set ,
so:

and compute:

The memoryless distribution is exponential

The exponential distribution is memoryless.
This means that knowledge that an event has not yet occurred does not affect the probability
of its occurring in future time intervals:

This is easily checked using the PDF:

No other continuous distribution is memoryless.
This means any other (continuous) memoryless distribution agrees in probability with the
exponential distribution. The reason is that the memoryless property can be rewritten as

. Consider  as a function of , and notice that this
function converts sums into products. Only the exponential function can do this.

The geometric distribution is the discrete memoryless distribution.

and by substituting , we also know .
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Then:

Extra - Inversion of decay rate factor in exponential

For constants  and :

Derivation:
Let  and observe that  (the “tail probability”).

Now observe that:

Let . So we see that:

Since the tail event is complementary to the cumulative event, these two distributions have
the same CDF, and therefore they are equal.

Extra - Geometric limit to exponential

Divide the waiting time into small intervals. Let  be the probability of at least one
success in the time interval  for any . Assume these events are independent.

A random variable  measuring the end time of the first interval  containing a
success would have a geometric distribution with  in place of :

By taking the sum of a geometric series, one finds:

Thus  as .
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