WO05 Notes

W05 Notes

Discrete families: summary

Bernoulli: X ~ Ber(p)

Indicates a win.
Px(1) =p, Px(0) =¢
EX]=p

Var[X] = pq

Binomial: X ~ Bin(n,p)

Counts number of wins.
n _
Px(k) = (k> prq*

E[X]=np
Var[X] = npq

These are n times the Bernoulli numbers.
Geometric: X ~ Geom(p)

Counts discrete wait time until first win.

Px(k) = ¢ 'p
1
E[X] ==
p
q
Var[X] = o

Pascal: X ~ Pasc({,p)

Counts discrete wait time until £** win.

k—1
P(i) = (31 )+

Var[x] = 4
b
These are £ times the Geometric numbers.
Poisson: X ~ Pois())

Counts “arrivals” during time interval.
k

A
Px(k) =e€ /\ﬁ

E[X] = A
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Var[X] = A

Function on a random variable

By composing any function g : R — R with a random variable X : S — R we obtain a new random
variable g o X. The new one is called a derived random variable.

The derived random variable g o X may be written “g(X)”.

Discrete case:

E[g(X)] = > g(k)- Px(k)

k

(Here the sum is over all possible values k of X, i.e. where Px(k) # 0.)

Continuous case:

Notice: when applied to outcome s € S:

k is the output of X
g(k) is the output of go X

The proofs of these formulas are tricky because we must relate the PDF or PMF of X to that of g(X)

(X)) =Yy Py (v)
=2 v > Px(k)

Yy keg=1(y)
= Z Z (k) - Px(k
Y keg(y)

=Y g(k) - Px(k)

k
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g Linearity of expectation

q(x) = akK<?

For constants a and b:
/N
ElaX +b] = aE[X]|+b
For any X and Y on the same probability model:

E[X +Y] = E[X]+ E[Y]

=i Exercise - Linearity of expectation

Using the definition of expectation, verify both linearity formulas for the discrete case.

A\ Be careful!
Usually E[g(X)] # g(E[X]).
For example, usually E[X - X] # E[X] - E[X].

We distribute E over sums but not products (unless the factors are independent).

B85 Variance squares the scale factor
Varl1=E[ (-]

For constants a and b:

Var[aX + b = o’ Var[X]

Thus variance ignores the offset and squares the scale factor. It is not linear!

=i Proof - Variance squares the scale factor

VarjaX +b) = E[(aX +b— E[aX + b))%

= E[(aX +b—aux — b)?]

— Bl(aX - apx)?
— Bla*(X - ux)’]
— o? B[(X — ux)’]

= a?Var[X]
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The n'" moment of X is defined as the expectation of X™:

Discrete case:

BX"] = 3K p(k)

k

Continuous case:
+o00
EX" = / z" - f(z)dz
A central moment of X is a moment of the variable X — E[X]:

B[(X - E[X))"]

The data of all the moments collectively determines the probability distribution. This fact can be
very useful! In this way moments give an analogue of a series representation, and are sometimes
more useful than the PDF or CDF for encoding the distribution.

03 Illustration

:= Example - Function given by chart

Suppose that g: R —+ R in such a way that g: 1 +— 4and g: 2+~ 1 and g : 3 — 87 and no other
values are mapped to 4, 1, 87.

Y = 9(x)

X: 1 2 3
Py(k): | 1/7 2/7 4/7
Y: 4 1 87
Then:
1 2 4 17
E[X]—1-7+2'7+3'7 >> 7

— = 1)~ 20+ g5 Pel3)
And: 7 = q0) 7, () 9(1) B 1) ~ 9(2) Bl2) + y05/ Fx
Elanl= 2,

1 2 4 354
E[Y]—4'7+1'7+87-7 >> T

Therefore:

17 354 814
EBX+2Y +3] >> 5'7+2~T+3 >> —

u

SE(x) ~2E[¥1+3

‘= Variance of uniform random variable
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The uniform random variable X on [a, b] has distribution given by P[c <X< d] = Z — ¢ When
—a
a<c<d<hb.
(a) Find Var[X] using the shorter formula. he(b-a) = l«l e
=> W7«
(b) Find Var[3X] using “squaring the scale factor.” _Px § o Unid ({27 )
(©) Find Var[3X] directly. = /~
Solution
a b
(@)
(1) Compute density.
The density for X is:
L Gwedfal
fx@ = {3-a orz € [a,
0 otherwise
Shoder Varionce:
M e . . . ) 2
(2) Compute E[X] and E[X“] directly using integral formulas. Ver [€1 = Elx*1 - E[X]
Compute E[X]: )
b = = 2 ‘F 0’(7(
EX] = / de »>> 2Fe el g g
. b—a 2 T w
Now compute E[X?:
b 2 1
T IR VT L
o P X 7 ofx
b - & S>> b-er
2 () > = |

(3) Find variance using short formula.

Plug in:
Var[X] = E[X?] - E[X]?
1 4 2 bta)’
>>» —Ob"+ab+a”) -
3 2
(b—a)®
>> 5
(b)

(1) “Squaring the scale factor” formula:

Var[aX +b] = a?Var[X]
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(2) Plugging in:

Var[3X] >> 9Var[X] >> %(b—a)2

©
(1) Density.
The variable 3X will have 1/3 the density spread over the interval [3a, 3b].

Density is then:

1
fox(@) = {35-3a on [3a, 3b]
0 otherwise
(2) Plug into prior variance formula.
Use a ~ 3a and b ~ 3b.
Get variance:
(3b — 3a)?
X| =
Var[3X] 55
Simplify:
3(b—a))?
>> (3( 12a)) >>» —(b—a)?
£} Exercise - Probabilities via CDF
Suppose the CDF of X is given by Fx(z) = Tre= Compute:
(a) P[X < 1] (b) P[X < 1] (©) P[-0.5 < X < 0.2] (d) P[-2 < X]

Solution

04 Theory

Suppose we are given the PDF fx(z) of X, a continuous RV.

What is the PDF f,x), the derived variable given by composing X with g: R — R?

PC“SYSH = 5& d=

a

F(x) = P ex] = —Lﬁﬁuf

X
- 4 rea
6/11 T'/LU-S: ‘FX[‘X) - ;/: FX[ )
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/N PDF of derived

The PDF of g(X) is not (usually) equal to go fx(z).

Relating PDF and CDF

When the CDF of X is differentiable, we have:

Fa@) = [ fxOdt é=  fxle) = 3 Fx(o)

e d
Fun@ = [ fun®dt < fun(©) = S-F (@)

Therefore, if we know fx(z), we can find fyx)(x) using a 3-step process:

(1) Find Fx(z), the CDF of X, by integration:
Compute Fx(z) = [*_ fx(t)dt.

Now remember that Fx(z) = P[X < z].

(2) Find Fx), the CDF of g(X), by comparing conditions:

When g is monotone increasing, we have equivalent conditions:

9JX) <z = X<g'l(z)
>»  PlgX)<z] = P[X<gz)]

> Fyx(z) = Fx(g'(z)

(3) Find fyx) by differentiating Fyx):

d i
fin(®) = SFw(@) = 2 F (g00)

05 Illustration
:= Example - PDF of derived from CDF

1

Suppose that Fx(z) = R

X
(a) Find the PDF of X. (b) Find the PDF of e*. Te 3()() = £
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Solution
()

Formula:

Fx@) = [ fx)d = fx(e) = - Fx()
Plug in:
@) = (14e) " »» —(4e) ()
(I+e)

(b)

By definition:
Since eX is increasing, we know:

Therefore:

F.x(z) = Fx(lnz)

>> >>>

1+ e b 1ta!

Then using differentiation:

d 1
fex(z) = I (ﬁ)

> 14z H) 2 (-2 >>» ——
( = ) @17

Continuous wait times

A random variable X is exponential, written X ~ Exp()), when X measures the wait time

until first arrival in a Poisson process with rate .

Exponential PDF:
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Ae M t>0

Fx(®) = {0 t<0

Poisson is continuous analog of binomial

Exponential is continuous analog of geometric

Notice the coefficient A in fx. This ensures P[—oco0 < X < oo] = 1:

o0
/ eMdt >> Al e -1 >>» AL
0

Notice the “tail probability” is a simple exponential decay:
PX>t] = e™

(Compute an improper integral to verify this.)

g5 Erlang variable

A random variable X is Erlang, written X ~ Erlang(¢, \), when X measures the wait time

until /™ arrival in a Poisson process with rate \.

Erlang PDF:

Erlang is continuous analog of Pascal

07 Illustration

:= Example - Earthquake wait time

Suppose the San Andreas fault produces major earthquakes modeled by a Poisson process,

with an average of 1 major earthquake every 100 years.

(a) What is the probability that there will nof be a major earthquake in the next 20 years?

(b) What is the probability that tiree earthquakes will strike within the next 20 years?
Solution

(a)
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Since the average wait time is 100 years, we set A = 0.01 earthquakes per year. Set
X ~ Exp(0.01) and compute:

PX>20]=e 0 > 000 s ~0.82

(b)
The same Poisson process has the same A = 0.01 earthquakes per year. Set X ~ Erlang(3,0.01),
so:
AL
t) = —t
Ix®) = oot e
(0.01) 51 o1t 0 o oo
—t ’ —t :
>> B_1) e >> e

and compute:

P[X <20] = " fx(z)dz
0

20 —6
0
>> / Tt%f‘"ol‘tdt S>> ~0.00115
0

08 Theory

The memoryless distribution is exponential

The exponential distribution is memoryless.
This means that knowledge that an event has not yet occurred does not affect the probability

of its occurring in future time intervals:
PX>t+s|X>t = P[X>s]
This is easily checked using the PDF:
e—)\(t+s)/e—)\t _ e—)\s
No other continuous distribution is memoryless.
This means any other (continuous) memoryless distribution agrees in probability with the
exponential distribution. The reason is that the memoryless property can be rewritten as

P[X > t+ s] = P[X > t|P[X > s]. Consider P[X > z] as a function of z, and notice that this
function converts sums into products. Only the exponential function can do this.

The geometric distribution is the discrete memoryless distribution.

00
P[X >n] >> Z lpo>> ¢"p(A+q+E+..)
k=n+1

>> q"%iq >>  q"

and by substituting n + k, we also know P[X > n + k] = ¢"**.
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Then:

PX =n+k| g 1p
PX=n+k|X> > —————— »» =
X =n+tk|X>n P[X > ]

>> ¢ p >> PX=k

For constants a and A:
Exp(al) ~ +Exp())

Derivation:
Let X ~ Exp()) and observe that P[X > t] = e~ (the “tail probability”).

Now observe that:
Pa'X >t = PIX>at] >> e
Let Y ~ Exp(a)). So we see that:
Pla'X >t] = P[Y >

Since the tail event is complementary to the cumulative event, these two distributions have
the same CDF, and therefore they are equal.

Divide the waiting time into small intervals. Let p = % be the probability of at least one
success in the time interval [a,a + %] for any a. Assume these events are independent.

A random variable T,, measuring the end time of the first interval [kn;l, %] containing a

success would have a geometric distribution with % in place of k:

k-1
P{Tn:£]2<1_i) L3
n n n

By taking the sum of a geometric series, one finds:

P[T,>z] = (1 - A) "

n

Thus P[T, > z] — e as n — oo.
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