
W05 Notes
Discrete families: summary

01 Theory

Bernoulli: X ∼ Ber(p)

Binomial: X ∼ Bin(n, p)

Geometric: X ∼ Geom(p)

Pascal: X ∼ Pasc(ℓ, p)

Poisson: X ∼ Pois(λ)

Indicates a win.
PX(1) = p, PX(0) = q

E[X] = p

Var[X] = pq

Counts number of wins.

PX(k) = (n
k
)pkqn−k

E[X] = np

Var[X] = npq

These are n times the Bernoulli numbers.

Counts discrete wait time until first win.
PX(k) = qk−1p

E[X] =
1

p

Var[X] =
q

p2

Counts discrete wait time until ℓth win.

PX(k) = (k − 1

ℓ − 1
)qk−ℓpℓ

E[X] =
ℓ

p

Var[X] =
ℓq

p2

These are ℓ times the Geometric numbers.

Counts “arrivals” during time interval.

PX(k) = e−λ λ
k

k!

E[X] = λ
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Function on a random variable

02 Theory

Var[X] = λ

By composing any function g : R → R with a random variable X : S → R we obtain a new random
variable g ∘ X. The new one is called a derived random variable.

Notice: when applied to outcome s ∈ S:

The proofs of these formulas are tricky because we must relate the PDF or PMF of X to that of g(X)

.

Notation

The derived random variable g ∘ X may be written “g(X)”.

Expectation of derived variables

Discrete case:

E[g(X)] = ∑
k

g(k) ⋅ PX(k)

(Here the sum is over all possible values k of X, i.e. where PX(k) ≠ 0.)

Continuous case:

E[g(X)] = ∫
+∞

−∞

g(x) ⋅ fX(x) dx

k is the output of X
g(k) is the output of g ∘ X

Proof - Discrete case - Expectation of derived variable

E[g(X)] = ∑
y

y ⋅ Pg(X)(y)

= ∑
y

y ⋅ ∑
k∈g−1(y)

PX(k)

= ∑
y

∑
k∈g−1(y)

g(k) ⋅ PX(k)

= ∑
k

g(k) ⋅ PX(k)
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Thus variance ignores the offset and squares the scale factor. It is not linear!

Linearity of expectation

For constants a and b:

E[aX + b] = aE[X] + b

For any X and Y  on the same probability model:

E[X + Y ] = E[X] + E[Y ]

Exercise - Linearity of expectation

Using the definition of expectation, verify both linearity formulas for the discrete case.

Be careful!

Usually E[g(X)] ≠ g(E[X]).

For example, usually E[X ⋅ X] ≠ E[X] ⋅ E[X].

We distribute E over sums but not products (unless the factors are independent).

Variance squares the scale factor

For constants a and b:

Var[aX + b] = a2 Var[X]

Proof - Variance squares the scale factor

Var[aX + b] = E[(aX + b − E[aX + b])2]

= E[(aX + b − aμX − b)2]

= E[(aX − aμX)2]

= E[a2(X − μX)2]

= a2 E[(X − μX)2]

= a2 Var[X]
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03 Illustration

The data of all the moments collectively determines the probability distribution. This fact can be
very useful! In this way moments give an analogue of a series representation, and are sometimes
more useful than the PDF or CDF for encoding the distribution.

Extra - Moments

The nth moment of X is defined as the expectation of Xn:

Discrete case:

E[Xn] = ∑
k

kn ⋅ p(k)

Continuous case:

E[Xn] = ∫
+∞

−∞

xn ⋅ f(x) dx

A central moment of X is a moment of the variable X − E[X]:

E[(X − E[X])n]

Example - Function given by chart

Suppose that g : R → R in such a way that g : 1 ↦ 4 and g : 2 ↦ 1 and g : 3 ↦ 87 and no other
values are mapped to 4, 1, 87.

X : 1 2 3

PX(k) : 1/7 2/7 4/7

Y : 4 1 87

Then:

E[X] = 1 ⋅
1

7
+ 2 ⋅

2

7
+ 3 ⋅

4

7
≫≫

17

7

And:

E[Y ] = 4 ⋅
1

7
+ 1 ⋅

2

7
+ 87 ⋅

4

7
≫≫

354

7

Therefore:

E[5X + 2Y + 3] ≫≫ 5 ⋅
17

7
+ 2 ⋅

354

7
+ 3 ≫≫

814

7

Variance of uniform random variable
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The uniform random variable X on [a, b] has distribution given by P[c ≤ X ≤ d] =
d − c

b − a
 when

a ≤ c ≤ d ≤ b.

(a) Find Var[X] using the shorter formula.

(b) Find Var[3X] using “squaring the scale factor.”

(c) Find Var[3X] directly.

Solution
(a)

(1) Compute density.

The density for X is:

fX(x) =

(2) Compute E[X] and E[X 2] directly using integral formulas.

Compute E[X]:

E[X] = ∫
b

a

x

b − a
dx ≫≫

b + a

2

Now compute E[X 2]:

E[X 2] = ∫
b

a

x2

b − a
dx ≫≫

1

3
(b2 + ba + a2)

(3) Find variance using short formula.

Plug in:

(b)

(1) “Squaring the scale factor” formula:

Var[aX + b] = a2Var[X]

⎧
⎨⎩

1

b − a
for x ∈ [a, b]

0 otherwise

Var[X] = E[X 2] − E[X]2

≫≫
1

3
(b2 + ab + a2) − ( b + a

2
)

2

≫≫
(b − a)2

12
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04 Theory

(2) Plugging in:

Var[3X] ≫≫ 9Var[X] ≫≫
9

12
(b − a)2

(c)

(1) Density.

The variable 3X will have 1/3 the density spread over the interval [3a, 3b].

Density is then:

f3X(x) =

(2) Plug into prior variance formula.

Use a ⇝ 3a and b ⇝ 3b.

Get variance:

Var[3X] =
(3b − 3a)2

12

Simplify:

≫≫
(3(b − a))2

12
≫≫

9

12
(b − a)2

⎧
⎨⎩

1

3b − 3a
on [3a, 3b]

0 otherwise

Exercise - Probabilities via CDF

Suppose the CDF of X is given by FX(x) =
1

1 + e−x
. Compute:

(a) P [X ≤ 1]  (b) P [X < 1]  (c) P [−0.5 ≤ X ≤ 0.2]  (d) P [−2 ≤ X]

Solution

Suppose we are given the PDF fX(x) of X, a continuous RV.

What is the PDF fg(X), the derived variable given by composing X with g : R → R?
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05 Illustration

Therefore, if we know fX(x), we can find fg(X)(x) using a 3-step process:

(1) Find FX(x), the CDF of X, by integration:

Compute FX(x) = ∫ x

−∞
fX(t) dt.

Now remember that FX(x) = P [X ≤ x].

(2) Find Fg(X), the CDF of g(X), by comparing conditions:

When g is monotone increasing, we have equivalent conditions:

(3) Find fg(X) by differentiating Fg(X):

fg(X)(x) =
d

dx
Fg(X)(x)

PDF of derived

The PDF of g(X) is not (usually) equal to g ∘ fX(x).

Relating PDF and CDF

When the CDF of X is differentiable, we have:

FX(x) = ∫
x

−∞
fX(t) dt ⟹ fX(x) =

d

dx
FX(x)

Fg(X)(x) = ∫
x

−∞
fg(X)(t) dt ⟹ fg(X)(x) =

d

dx
Fg(X)(x)

g(X) ≤ x ⟺ X ≤ g−1(x)

≫≫ P [ g(X) ≤ x ] = P [X ≤ g−1(x) ]

≫≫ Fg(X)(x) = FX(g−1(x))

Example - PDF of derived from CDF

Suppose that FX(x) =
1

1 + e−x
.

(a) Find the PDF of X.  (b) Find the PDF of eX.
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Continuous wait times

06 Theory

Solution

(a)

Formula:

FX(x) = ∫
x

−∞

fX(t) dt ⟹ fX(x) =
d

dx
FX(x)

Plug in:

(b)

By definition:

FeX(x) = P [eX ≤ x]

Since eX is increasing, we know:

eX ≤ a ⟺ X ≤ ln a

Therefore:

Then using differentiation:

fX(x) =
d

dx
(1 + e−x)

−1
≫≫ −(1 + e−x)−2 ⋅ (−e−x)

≫≫
e−x

(1 + e−x)
2

FeX(x) = FX(lnx)

≫≫
1

1 + e− lnx
≫≫

1

1 + x−1

feX(x) =
d

dx
( 1

1 + x−1
)

≫≫ −(1 + x−1)−2 ⋅ (−x−2) ≫≫
1

(x + 1)2

Exponential variable

A random variable X is exponential, written X ∼ Exp(λ), when X measures the wait time
until first arrival in a Poisson process with rate λ.

Exponential PDF:
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07 Illustration

Notice the coefficient λ in fX. This ensures P [−∞ ≤ X ≤ ∞] = 1:

∫
∞

0
e−λt dt ≫≫ −λ−1(e−λ⋅∞ − 1) ≫≫ λ−1

Notice the “tail probability” is a simple exponential decay:

P [X > t] = e−λt

(Compute an improper integral to verify this.)

fX(t) = {λe
−λt t ≥ 0

0 t < 0

Poisson is continuous analog of binomial
Exponential is continuous analog of geometric

Erlang variable

A random variable X is Erlang, written X ∼ Erlang(ℓ,λ), when X measures the wait time
until ℓth arrival in a Poisson process with rate λ.

Erlang PDF:

fX(t) =
λℓ

(ℓ − 1)!
tℓ−1e−λt

Erlang is continuous analog of Pascal

Example - Earthquake wait time

Suppose the San Andreas fault produces major earthquakes modeled by a Poisson process,
with an average of 1 major earthquake every 100 years.

(a) What is the probability that there will not be a major earthquake in the next 20 years?

(b) What is the probability that three earthquakes will strike within the next 20 years?

Solution

(a)
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08 Theory

Since the average wait time is 100 years, we set λ = 0.01 earthquakes per year. Set
X ∼ Exp(0.01) and compute:

P [X > 20] = e−λ⋅20 ≫≫ e−0.01⋅20 ≫≫ ≈ 0.82

(b)

The same Poisson process has the same λ = 0.01 earthquakes per year. Set X ∼ Erlang(3, 0.01),
so:

and compute:

fX(t) =
λℓ

(ℓ − 1)!
tℓ−1e−λt

≫≫
(0.01)3

(3 − 1)!
t3−1e−0.01⋅t ≫≫

10−6

2
t2e−0.01⋅t

P [X ≤ 20] = ∫
20

0
fX(x) dx

≫≫ ∫
20

0

10−6

2
t2e−0.01⋅t dt ≫≫ ≈ 0.00115

The memoryless distribution is exponential

The exponential distribution is memoryless.
This means that knowledge that an event has not yet occurred does not affect the probability
of its occurring in future time intervals:

P [X > t + s ∣ X > t] = P [X > s].

This is easily checked using the PDF:

e−λ(t+s)/e−λt = e−λs

No other continuous distribution is memoryless.
This means any other (continuous) memoryless distribution agrees in probability with the
exponential distribution. The reason is that the memoryless property can be rewritten as
P [X > t + s] = P [X > t]P [X > s]. Consider P [X > x] as a function of x, and notice that this
function converts sums into products. Only the exponential function can do this.

The geometric distribution is the discrete memoryless distribution.

and by substituting n + k, we also know P [X > n + k] = qn+k.

P [X > n] ≫≫
∞

∑
k=n+1

qk−1p ≫≫ qnp(1 + q + q2 + …)

≫≫ qn
p

1 − q
≫≫ qn
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Then:

P [X = n + k ∣ X > n] ≫≫
P [X = n + k]

P [X > n]
≫≫

qn+k−1p

qn

≫≫ qk−1p ≫≫ P [X = k]

Extra - Inversion of decay rate factor in exponential

For constants a and λ:

Exp(aλ) ∼ 1
a Exp(λ)

Derivation:
Let X ∼ Exp(λ) and observe that P [X > t] = e−λt (the “tail probability”).

Now observe that:

P [a−1X > t] = P [X > at] ≫≫ e−λat

Let Y ∼ Exp(aλ). So we see that:

P [a−1X > t] = P [Y > t]

Since the tail event is complementary to the cumulative event, these two distributions have
the same CDF, and therefore they are equal.

Extra - Geometric limit to exponential

Divide the waiting time into small intervals. Let p = λ
n  be the probability of at least one

success in the time interval [a, a + 1
n ] for any a. Assume these events are independent.

A random variable Tn measuring the end time of the first interval [ k−1
n

, k
n

] containing a
success would have a geometric distribution with kn  in place of k:

P [Tn =
k

n
] = (1 −

λ

n
)

k−1
λ

n

By taking the sum of a geometric series, one finds:

P [Tn > x] = (1 −
λ

n
)
⌊nx⌋

Thus P [Tn > x] → e−λx as n → ∞.
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