W06 Notes

Continuous families: summary

01 Theory

Uniform: $X \sim \text{Unif}([a,b])$

- All times $a \le t \le b$ equally likely.
- $f_X(t) = \frac{1}{b-a}$
- $E[X] = \frac{a+b}{2}$
- $Var[X] = \frac{1}{12}(b-a)^2$

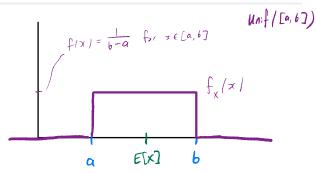
- Measures wait time until first arrival.
- $ullet f_X(t) = \lambda e^{-\lambda t}$
- $E[X] = \frac{1}{\lambda}$
- $\operatorname{Var}[X] = \frac{1}{\lambda^2}$

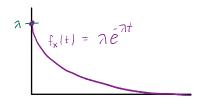
Erlang: $X \sim \operatorname{Erlang}(\ell, \lambda)$

- Measures wait time until ℓ^{th} arrival.
- $ullet f_X(t) = rac{\lambda^\ell}{(\ell-1)!} t^{\ell-1} e^{-\lambda t}$
- $E[X] = \frac{\ell}{\lambda}$
- $\operatorname{Var}[X] = \frac{\ell}{\lambda^2}$

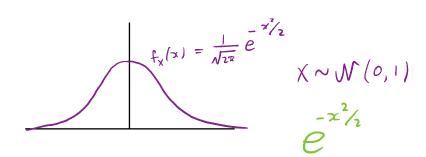
Normal: $X \sim \mathcal{N}(\mu, \sigma^2)$

- Limiting distribution of large sums.
- $ullet f_X(x) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$
- $E[X] = \mu$
- $\bullet \ \, \mathrm{Var}[X] = \sigma^2$





We will see Later: $Exp(\pi) + Exp(\pi) = Erlang(2, \pi)$ ie. $X, Y \sim Exp(\pi)$ then $X+Y \sim Erlang(2, \pi)$



Normal distribution

02 Theory

⊞ Normal distribution

A variable *X* has a **normal distribution**, written $X \sim \mathcal{N}(\mu, \sigma^2)$ or "*X* is Gaussian (μ, σ) ," when it has PDF given by:

$$f_X(x) \; = \; rac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$$

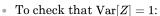
The standard normal is $Z \sim \mathcal{N}(0,1)$ and its PDF is usually denoted by $\varphi(x)$:

$$arphi(x) \ = \ rac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

The standard normal CDF is **usually denoted by** $\Phi(z)$:

$$\Phi(z) \ = \ \int_{-\infty}^z rac{1}{\sqrt{2\pi}} e^{-u^2/2} \, du$$

- To show that $\varphi(x)$ is a valid probability density, we must show that $\int_{-\infty}^{+\infty} \varphi(x) \, dx = 1$.
 - This calculation is *not trivial*; it requires a double integral in polar coordinates!
- There is no explicit antiderivative of φ
 - · A computer is needed for numerical calculations.
 - A *chart of approximate values* of Φ is provided for exams.
- To check that E[Z] = 0:
 - Observe that $x\varphi(x)$ is an *odd function*, i.e. symmetric about the *y*-axis.
 - One must then simply verify that the improper integral converges.



check that
$$Var[Z] = 1$$
:

• Since $\mu = E[Z] = 0$, we find:

In simply verify that the improper integral converges.

$$|Z| = 1: \qquad \qquad |Z| = |Z|^2 - |Z|^2 = |Z|^2 - |Z|^2 = |Z|^2 + |Z|^2 + |Z|^2 = |Z|^2 + |$$

• Use integration by parts to compute that I = 1. (Select u = x and $dv = xe^{-x^2/2} dx$.)

General and standard normals

Assume that $Z \sim \mathcal{N}(0,1)$ and σ , μ are constants. Define $X = \sigma Z + \mu$. Then:

$$f_{X} \; = \; rac{1}{\sqrt{2\pi\sigma^{2}}} e^{-(x-\mu)^{2}/2\sigma^{2}}$$

That is, $\sigma Z + \mu$ has the distribution type $\mathcal{N}(\mu, \sigma^2)$.

\blacksquare Derivation of PDF of $\sigma Z + \mu \Rightarrow$

Suppose that $X = \sigma Z + \mu$. Then:

$$egin{aligned} F_X(x) &= P[X \leq x] \ &= P[\,\sigma Z + \mu \leq x\,] \ &= P[\,Z \leq rac{x-\mu}{\sigma}\,] \end{aligned} egin{aligned} oldsymbol{\mathcal{F}}_{\mathbf{Z}}\left(rac{x-\mu}{\sigma}
ight) \ &= \Phi\left(rac{x-\mu}{\sigma}
ight) \end{aligned}$$

Differentiate to find f_X :

$$f_X(x) = \frac{d}{dx} F_X(x)$$

$$= \frac{d}{dx} \Phi\left(\frac{x-\mu}{\sigma}\right) \qquad \stackrel{\text{d}}{\text{d}x} \bar{\Phi} = \varphi$$

$$= \frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right) \qquad \stackrel{\text{e}}{\text{e}} \qquad$$

From this fact we can infer that $E[X] = \mu$ and $Var[X] = \sigma^2$ whenever $X \sim \mathcal{N}(\mu, \sigma^2)$.

03 Illustration

≡ Example - Basic generalized normal calculation

Suppose $X \sim \mathcal{N}(-3,4)$. Find $P[X \geq -1.7]$.

Solution

First write X as a linear transformation of Z:

X 7 -1.7

$$X\sim 2Z-3$$

Then:

$$X \sim 2Z - 3$$

$$2Z - 3 \geqslant -1.7$$

$$Z \geqslant \frac{-1.7 + 3}{2} = 0.6$$

$$X \ge -1.7 \iff Z \ge 0.65$$

Look in a table to find that $\Phi(0.65)\approx 0.74$ and therefore:

$$(0.65) \approx 0.74$$
 and therefore: $P[Z \ge 0.65]$ $\gg \gg 1 - P[Z \le 0.65]$

$$\gg\gg$$
 $\approx 1-0.74$ $\gg\gg$ 0.26

\equiv Example - Gaussian: interval of 2/3

Find the number a such that $P[-a \le Z \le +a] = 2/3$.

Solution

First convert the question:

$$egin{aligned} Pig[-a \le Z \le +aig] &\gg\gg &F_Z(a) - F_Z(-a) \ &\gg\gg &\Phi(a) - \Phi(-a) \ &\gg\gg &2\Phi(a) -1 \end{aligned}$$

Solve for a so that this value is 2/3:

Use a Φ table to conclude $a \approx 0.97$.

≔ Example - Heights of American males

Suppose that the height of an American male in inches follows the normal distribution $\mathcal{N}(71,6.25)$.

- (a) What percent of American males are over 6 feet, 2 inches tall?
- (b) What percent of those over 6 feet tall are also over 6 feet, 5 inches tall?

Solution

(a)

Let H be a random variable measuring the height of American males in inches, so $H \sim \mathcal{N}(71, 2.5^2)$. Thus $H \sim 2.5Z + 71$, and:

$$\begin{array}{cccc} P[H>74] & \gg \gg & 1-P[H\leq 74] \\ & \gg \gg & 1-P[2.5Z+71\leq 74] \\ & \gg \gg & 1-P[Z\leq 1.20] \\ & \gg \gg & 1-0.8849\approx 11.5\% \end{array}$$

(b)

We seek $P[H > 77 \mid H > 72]$ as the answer. Compute as follows:

$$P[H > 77 \mid H > 72] = \frac{P[H > 77]}{P[H > 72]}$$

$$\gg \frac{P[2.5Z + 71 > 77]}{P[2.5Z + 71 > 72]}$$

$$\gg \frac{1 - P[Z \le 2.4]}{1 - P[Z \le 0.4]} = \frac{1 - 0.9918}{1 - 0.6554} \approx 2.38\%$$

Example - Variance of normal from CDF table

Suppose $X \sim \mathcal{N}(5, \sigma^2)$, and suppose you know P[X > 9] = 0.2.

Find the approximate value of σ using a Φ table.

Solution

$$X \sim \mathcal{N}(5, \sigma^2) \implies X \sim \sigma Z + 5$$

So $1 - P[X \le 9] = 0.2$ and thus $P[\sigma Z + 5 \le 9] = 0.8$. Then:

$$P[\sigma Z + 5 \leq 9] = P[Z \leq 4/\sigma]$$

so
$$P[Z \le 4/\sigma] = 0.8$$
.

Looking in the chart of Φ for the nearest inverse of 0.8, we obtain $4/\sigma=0.842$, hence $\sigma=4.75$.

Find the number a such that $P[-a \le Z \le +a] = 2/3$.

$$P[-a \le Z \le +\alpha] = \int_{\sqrt{\pi}}^{+a} e^{-x^{2}/2} dx = \frac{2}{3}$$
ans

$$B = \overline{\Phi}(-a)$$

$$ans = 1 - 2\overline{\Phi}(-a)$$

$$B = 1 - \Phi(+a)$$

$$ans = 1 - 2(1 - \Phi(a))$$

$$= 2\Phi(a) - 1$$

$$\frac{2}{3} = 2\Phi(a) - 1$$

$$\overline{\Phi}(a) = \frac{5}{6}$$

$$n$$
 chart n $0 = 0.97$

Lesson:
$$\Phi(-z) = 1 - \Phi(+z)$$

Suppose that the height of an American male in inches follows the normal distribution
$$\mathcal{N}(71,6.25)$$
.

- (a) What percent of American males are over 6 feet, 2 inches tall?
- (b) What percent of those over 6 feet tall are also over 6 feet, 5 inches tall?

$$X \sim \mathcal{N}(71, 2.5^2)$$
 $M = 71, \sigma = 2.5$

(a)
$$P[X > 74] = P[2.5Z+71 > 74]$$

$$= P[Z > \frac{74-7}{2.5}] \qquad \frac{val - N}{\sigma}$$

$$= P[Z > 1.2]$$

$$= "Z - Score$$

$$P[X > 77 | X > 72]$$
 = 11.5%

$$= \frac{P[x,77](x,72)}{P[x,72]}$$

$$= \frac{P[x>77]}{P[x>72]} = \frac{P[2.52+71>77]}{P[2.52+71>72]}$$

$$= \frac{1 - P[Z \le 2.4]}{1 - P[Z \le 0.4]} = \frac{1 - 0.9918}{1 - 0.6554} \approx 2.38\%$$

Suppose $X \sim \mathcal{N}(5, \sigma^2)$, and suppose you know P[X > 9] = 0.2.

Find the approximate value of σ using a Φ table.

$$1-0.2 = P[x \le 9]$$
 $X \sim \sigma Z + 5$
0.8

$$P[Z \leq \frac{4}{6}] = 0.8$$
 $\Phi(\frac{4}{6}) = 0.8$
 $\Psi(\sigma = \overline{\Phi}(0.8)$
 $= 0.842$