
W06 Notes
Continuous families: summary

01 Theory

Normal distribution

02 Theory

Uniform: 

Exponential: 

Erlang: 

Normal: 

All times  equally likely.

Measures wait time until first arrival.

Measures wait time until  arrival.

Limiting distribution of large sums.

Normal distribution
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A variable  has a normal distribution, written  or “  is Gaussian ,”
when it has PDF given by:

The standard normal is  and its PDF is usually denoted by :

The standard normal CDF is usually denoted by :

To show that  is a valid probability density, we must show that .
 This calculation is not trivial; it requires a double integral in polar coordinates!

There is no explicit antiderivative of 
 A computer is needed for numerical calculations.

A chart of approximate values of  is provided for exams.

To check that :
 Observe that  is an odd function, i.e. symmetric about the -axis.

One must then simply verify that the improper integral converges.
To check that :

 Since , we find:

Use integration by parts to compute that . (Select  and .)

General and standard normals

Assume that  and  are constants. Define . Then:

That is,  has the distribution type .

Derivation of PDF of  

Suppose that . Then:
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03 Illustration

From this fact we can infer that  and  whenever .

Differentiate to find :

Example - Basic generalized normal calculation

Suppose . Find .

Solution

First write  as a linear transformation of :

Then:

Look in a table to find that  and therefore:

Example - Gaussian: interval of 

Find the number  such that .

Solution
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First convert the question:

Solve for  so that this value is :

Use a  table to conclude .

Example - Heights of American males

Suppose that the height of an American male in inches follows the normal distribution
.

(a) What percent of American males are over 6 feet, 2 inches tall?

(b) What percent of those over 6 feet tall are also over 6 feet, 5 inches tall?

Solution

(a)
Let  be a random variable measuring the height of American males in inches, so

. Thus , and:

(b)
We seek  as the answer. Compute as follows:

Example - Variance of normal from CDF table
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Suppose , and suppose you know .

Find the approximate value of  using a  table.

Solution

So  and thus . Then:

so .

Looking in the chart of  for the nearest inverse of 0.8, we obtain , hence .
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PC-a<z : +a)= x
= 2

ans

B = I)-a) ⑮
ans = 1 - 2()-a) -a +A

B = 1 - G(+a)
ans = 1-2/1-I(a))

= 2(a) - 1 -
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= = 2(a) - 1

I(a) = > chart gives21 =f
* chart ~D a = 0

.
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because #(0. 97) = 0.8340

Lesson : E(-2) = 1 - E(+ 2)
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