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Joint distributions

01 Theory

Joint distributions describe the probabilities of events associated with multiple random variables
simultaneously.

In this course we consider only two variables at a time, typically called X and Y. It is easy to extend this
theory to vectors of n random variables.

Discrete joint PMF:
Pxy(k,l) = Pxy|[X=z,Y=/{

Continuous joint PDF:

fxy(z,y) = density at (z,y)

(x)d

Probabilities of events: Discrete case

If B C R? is a set of points in the plane, then an event 3 is formed by the set of all outcomes s mapped by
X and Y to points in B:

B= {s € 5| (X(s), Y(5)) € B}
The probabilities of such events can be measured using the joint PMF:

P[(X,Y)eB]=PB = Y Pxy(k?)
(k,)eB
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Probabilities of events: Continuous case
Let V = [a,b] x [c,d] C R? be the rectangular region defined by (z,y) € R? such that a < z < b and
c <y <d. Then:

P[(w,y)GV]zP[aSXSb,cSYﬁd} = /d/bfx,y(a:,y)dwdy

For more general regions V C R%:

P[(X,Y)ev] = //fo,y(w,y)dA

The existence of a variable Y does not change the theory for a variable X considered by itself.
However, it is possible to relate the theory for X to the theory for (X,Y), in various ways.

The simplest relationship is the marginal distribution for X, which is merely the distribution of X
itself, considered as a single random variable, but in a context where it is derived from the joint
distribution for (X,Y).

Marginal distributions are obtained from joint distributions by summing the probabilities over all
possibilities of the other variable.

Discrete marginal PMF:

Px(k) = ZPX,Y(kvf)
3

Py(t) = Y Pxy(ko)
%

Continuous marginal PMF:

+o00

fx(z) = Fxy(z,y)dy
+00

fr(y) = fxy(z,y)de

Suppose X has density fx(z) that is continuous at zy. Then for infinitesimal dz:
Plzo< X <zo+dz] = f[fx(z)dz

Suppose X and Y have joint density fx y(z,y) that is continuous at (zo, yo). Then for infinitesimal
dz, dy:

Plzg < X <mo+dz, yo<Y <yo+dy] = fxy(zo,9)dzdy

I\ Joint densities depend on coordinates
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The density fxy(z,y) in these integration formulas depends on the way X and Y act as Cartesian
coordinates and determine differential areas dz dy as little rectangles.

To find a density fre(r,0) in polar coordinates, for example, it is not enough to solve for z(r, ) and
y(r,6) and plug into fx,y!

Instead, we must consider the differential area dz dy vs. dr df. We find that dz dy = r dr d6.

As an example, the density of the uniform distribution on the unit disk is fre = 1, which is not
™

constant as a function of » and 6.

It is not always possible to form a joint PDF fxy from any two continuous RVs X and Y.

For example, if X =Y, then (X,Y’) cannot have a joint PDF, since P[X = Y] = 1 but the integral over
the region X = Y will always be 0. (The area of a line is zero.)

‘= Example - Smaller and bigger rolls
Roll two dice, and let X indicate the smaller of the numbers rolled, and let Y indicate the bigger
number.

Make a chart showing the PMF. Compute the marginal probabilities, and write them in the margins
of the chart.

Solution
y
11/36 6 ©2/36 236 ©2/36 236 236 e1/36
936 5 ©2/36 236 236 236 *1/36
736 4 ©2/36 236 *2/36 *1/36
536 3 236 *2/36 1/36
3136 2 ©2/36 *1/36
1/36 1 ° 1/36

1 2 3 4 5 6
11/36 9/36 7/36 5/36 3/36 1/36

iZ! Exercise - Event probabilities by reading PMF table

Here is a joint PMF table:
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Pocleg) |9=0 g=1 g=2 g=3
g=0 [ 006 018 024 0.12
g=1 | 004 012 016 0.08

Using the table, compute the following event probabilities:

@PQ=0 ®MPR=G (@©PG>1 (dPG>q

=} Exercise - Joint and marginal PMFs - Coin flipping

Flip a fair coin four times. Let X measure the number of heads in the first two flips, and let Y

measure the total number of heads.

Make a chart showing the PMF. Compute the marginal probabilities, and write them in the margins
of the chart.

:= Example - Marginal and event probability from joint density

Suppose the joint density of X and Y is given by:

fxy(z,y) = {g:ce“*y gtie::;;isi <
Find fy(y) and P[Y < 3X?].
Solution
Compute the marginal PDF:
+oo

fr(y) = 3 fxy(z,y)dz

v,
>> / 2ze” e Vdr >> 1—e?
0

Find probability of the event Y < 3X2:
1 322 .
P[Y<3X2] :/ / 2ze” Ydydx
0 x2
1 2 2 2
>> / 2ze” (e_w =g = ) dz
0

>> 1(1+e7?)

Z! Exercise - Marginals from joint density

The joint PDF for X and Y is given by:

6(z+y%)/5 0<z,y<l1
0 otherwise

fxy(z,y) = {

Find fx(z) and fy(y).
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Z! Exercise - Event probability from joint density

The joint PDF for X and Y is given by:

_ 2 %e W gy>0
fX,Y(x7y) - {0 else
Compute P[X < Y].
03 Theory
g? Joint CDF
The joint CDF of X and Y is defined by:
Fxy(y) = P[X<z,Y<y

We can relate the joint CDF to the joint PDF using integration:
Y T
Fxy(z,y) = / / Fxy(s,t)dsdt
—o0 J —00

Y

{X<x Y<y/ xy)

Conversely, if X and Y have a continuous joint PDF fxy(z,y) that is also differentiable, we can obtain
the PDF from the CDF using partial derivatives:
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82

fxy(z,y) B2y Fxy(z,y)

There is also a marginal CDF that is computed using a limit:

FX($): lim FX,Y(%ZJ)

Yy—+00

This could also be written, somewhat abusing notation, as Fx(z) = Fx y(z, +00).

Z: Exercise - Properties of joint CDF's

(a) Show with a drawing that if both z < 2’ and y < ¥/, we know:
Fxy(z,y) < Fxy(z',y)
(b) Explain why:

Fx((E) = FX’Y(CE, OO)
Fy(y) = Fx,y(00,y)

(c) Explain why:

Fxy(z,—00) =0

Fxy(—00,y) =0

Independent random variables

Random variables X, Y are independent when they satisfy the product rule for all valid subsets
Bla BQ C R:

P[X € B1,Y € By] = P[X € B1] - P[Y € By]

Since {X € B}, Y € By} = {X € B} N{Y € B,}, this definition is equivalent to independence of all events

constructible using the variables X and Y.

For discrete random variables, it is enough to check independence for simple events of type {X = k} and
{Y = ¢} for k and £ any possible values of X and Y.

The independence criterion for random variables can be cast entirely in terms of their distributions and
written using the PMF's or PDFs.
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Discrete case:
Pxy(k,t) = Px(k)-Pr(£)
Continuous case:

fxy(z,y) = fx(z) fr(y)

Random variables X and Y are independent when their CDF's obey the product rule:

Fxy(z,y) = Fx(z)- Fr(y)

:= Example - Meeting in the park
A man and a woman arrange to meet in the park between 12:00 and 1:00pm. They both arrive at a
random time with uniform distribution over that hour, and do not coordinate with each other.

Find the probability that the first person to arrive has to wait longer than 15 minutes for the second
person to arrive.

Solution

Let X denote the time the man arrives. Use minutes starting from 12:00, so X € (0,60). Let Y denote

the time the woman arrives, using the same interval.

The probability we seek is:
P[X +15 < Y]+ P[Y 4+ 15 < X]

Because X and Y are symmetrical in probability, these terms have the same value, so we just double
the first one for our answer.

Since the arrivals are independent of each other, we have fxy = fx - fy.

Since each arrival time is uniform over the interval, we have:

_ [1/60 =z € (0,60) ~ [1/60 y € (0,60)
fx(z) = {0 otherwise fry) = {0 otherwise

Therefore the joint density is fxy = (%)2. Calculate:

2P[X+15<Y] >> 2// f(z,y) dz dy
z+15<y

60 py-15 7 1\ 2
>> 2// fx(@)fy(y)dedy >> 2/ / <—> dz dy
e+15<y 15 Jo 60

2 60
> W/H,y*”’dy > .

‘= Example - Uniform disk: Cartesian vs. polar

719
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Suppose that a point is chosen uniformly at random on the unit disk.

(a) Let X and Y be the Cartesian coordinates of the chosen point. Are X and Y independent?
(b) Let R and O give the polar coordinates of the chosen point. Are R and © independent?
Solution

(@

Write fxy for the joint distribution of X and Y. We have:

1 2 2<1
fX,Y:{ /m T4y S

0 otherwise

Then computing fx(z), we obtain:

+V1-z?
1 2

/ —dy >> —\/1 — x2
—Via? ™

2 — P _
> Fxl(e) = {W\/l z? z €| %,1}

0 otherwise
By similar reasoning, fy(y) = 2./1 —y?2 for y € [0,1].

The product fx(z)fy(y) is not equal to fxy(z,y), so X and Y are not independent. Information about

the value of X does provide constraints on the possible values of Y, so this result makes sense.

(b)

To find the marginals fr(r) and fe(0), the standard method is to integrate the density fre in the
opposite variables.
A fre (r,0) varies!

The probability density fre(r, ) is not constant!
The area of a differential sector dr df depends on r.

We can take two approaches to finding the density fre:

(1) Area of a differential sector divided by total area:

rdrdf

>>  Zdrdd
s
So the density is fre = L.
™

(i) Via the CDF:

The region ‘below’ a given point (r,6), in polar coordinates, is a sector with area Z—i -7r2. The

factor 2% is a percentage of the circle with area mr?.

The density is a constant 1 across the disk, so the CDF at (r, 6) is this same area times .
Thus:
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or?
Froo =
120 21

Then in polar coordinates the density is given by taking partial derivatives:

0?2 1 r
fro(r0) = arae<%0’"2> >z =

Once we have fr e, integrate to get the marginals:

2m 2m
fr(r) = fredd >> / %da >>  2r
—0 0

1 1
1
f@(ﬂ) = / fR,G) dr >> / L dr >> e
=0 o T 2

Check independence:

fR,®:£ ‘ (2r) (%) =fr- fo

In this problem it is feasible to find the marginals directly, without computing the new density, only

using some geometric reasoning.

The probability P [R € (r,r+ dT‘)] is the area (over ) of a thickened circle with radius r and
thickness dr. The circumference of a circle at radius r is 27r. So the area of the thickened circle
is 27r dr. So the probability is 2r dr. This tells us that the marginal probability density is

P R(?") = 2pr.

The probability P[@ € (6,6 + dG)} is the area (over ) of a thin sector with radius 1 and angle dé.
This area is %12 dé. So the probability is % df. This tells us that the marginal probability
density is Pg () = o

These results agree with those of the ‘calculus’ approach above!
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