
W09 Notes
Sums of random variables

01 Theory

02 Illustration

THEOREM: Continuous PDF of a sum

Let  be any joint continuous PDF.

Suppose . Then:

When  and  are independent, so , this becomes convolution:

Equally valid to integrate in the -slot: 

Extra - Derivation of  PDF

The joint CDF of :

Find  by differentiating:

To calculate this derivative, change variables by setting  and . The Jacobian is 1, so 
becomes , and we have:

Example - Sum of parabolic random variables

Suppose  is an RV with PDF given by:

Let  be an independent copy of . So , but  is independent of .

Find the PDF of .

Solution
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03 Theory - extra

The graph of  matches the graph of  except (i) flipped in a vertical mirror, (ii) shifted by  to the
left.

When , the integrand is nonzero only for :

When , the integrand is nonzero only for :

Final result is:

Convolution

The convolution of two continuous functions  and  is defined by:
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04 Illustration

For more example calculations, look at 9.6.1 and 9.6.2 at this page.

Applications of convolution

Convolutional neural networks (machine learning theory: translation invariant NN, low pre-processing)
Image processing: edge detection, blurring
Signal processing: smoothing and interpolation estimation
Electronics: linear translation-invariant (LTI) system response: convolution with impulse function

Extra - Convolution

Geometric meaning of convolution
Convolution does not have a neat and precise geometric meaning, but it does have an imprecise intuitive sense.

The product of two quantities tends to be large when both quantities are large; when one of them is small or
zero, the product will be small or zero. This behavior is different from the behavior of a sum, where one
summand being large is sufficient for the sum to be large. A large summand overrides a small co-summand,
whereas a large factor is scaled down by a small cofactor.

The upshot is that a convolution will be large when two functions have similar overall shape. (Caveat: one
function must be flipped in a vertical mirror before the overlay is considered.) The argument value where the
convolution is largest will correspond to the horizontal offset needed to get the closest overlay of the functions.

Algebraic properties of convolution

The last of these is not the typical Leibniz rule for derivatives of products!

All of these properties can be checked by simple calculations with iterated integrals.

Convolution in more variables
Given , their convolution at  is defined by integrating the shifted products over the whole
domain:

Exercise - Convolution practice

Suppose  is an RV with density:

Suppose  is uniform on .

Find the PDF of . Sketch the graph of this PDF.
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05 Theory

06 Illustration

Recall that in a Poisson process:

Since the wait times between arrivals are independent, we expect that the sum of exponential distributions is an
Erlang distribution. This is true!

 measures continuous wait time until one arrival
 measures continuous wait time until  arrival

Erlang sum rule

Specify a given Bernoulli process with success probability . Suppose that:

Then:

 and  are independent

Exp plus Exp is Erlang

Recall that .

So we could say:

And:

Example - Exp plus Exp equals Erlang

Let us verify this formula by direct calculation:

Solution

Let  be independent RVs.

Therefore:

Now compute the convolution:
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Expectation for two variables

07 Theory

This is the Erlang PDF:

Exercise - Erlang induction step

By direct computation with PDFs and convolution, derive the formula:

Observation: By repeatedly applying the above formula, it follows that:

These formulas are not trivial to prove, and we omit the proofs. (Recall the technical nature of the proof we gave for
 in the discrete case.)

We already know that expectation is linear in a single variable: .

Therefore this two-variable formula implies:

Expectation for a function on two variables

Discrete case:

Continuous case:

Expectation sum rule

Suppose  and  are any two random variables on the same probability model.

Then:
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08 Illustration

Expectation product rule: independence

Suppose that  and  are independent.

Then we have:

Extra - Proof: Expectation sum rule, continuous case

Suppose  and  give marginal PDFs for  and , and  gives their joint PDF.

Then:

Observe that this calculation relies on the formula for , specifically with .

Extra - Proof: Expectation product rule

 from joint PMF chart

Suppose the joint PMF of  and  is given by this chart:

0.2 0.2

0.35 0.1

0.05 0.1

Define . Find the expectation .

Solution
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First compute the values of  for each pair  in the chart:

0 3

1 4
2 5

Now take the sum, weighted by probabilities:

Exercise - Understanding expectation for two variables

Suppose you know only that  and .

Which of the following can you calculate?

 two ways, and , from joint density

Suppose  and  are random variables with the following joint density:

(a) Compute  using two methods.

(b) Compute .

Solution

(a)

(1) Method One: via marginal PDF :

Then expectation:

(2) Method Two: directly, via two-variable formula:

(b) Directly, via two-variable formula:
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Covariance and correlation

09 Theory

Write  and .

Observe that the random variables  and  are “centered at zero,” meaning that
.

To derive the shorter formula, first expand the product  and then apply linearity.

Notice that covariance is always symmetric:

The self covariance equals the variance:

The sign of  reveals the correlation type between  and :

Correlation Sign

Positively correlated

Negatively correlated

Uncorrelated

Covariance

Suppose  and  are any two random variables on a probability model. The covariance of  and  measures
the typical synchronous deviation of  and  from their respective means.

Then the defining formula for covariance of  and  is:

There is also a shorter formula:

Correlation coefficient

Suppose  and  are any two random variables on a probability model.

Their correlation coefficient is a rescaled version of covariance that measures the synchronicity of
deviations:

The rescaling ensures:
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10 Illustration

11 Theory

Covariance depends on the separate variances of  and  as well as their relationship.

Correlation coefficient, because we have divided out , depends only on their relationship.

Covariance from PMF chart

Suppose the joint PMF of  and  is given by this chart:

0.2 0.2

0.35 0.1

0.05 0.1

Find .

Solution

We need  and  and .

Therefore:

Covariance bilinearity

Given any three random variables , , and , we have:

Covariance and correlation: shift and scale

Covariance scales with each input, and ignores shifts:
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Whereas shift or scale in correlation only affects the sign:

Extra - Proof of covariance bilinearity

Extra - Proof of covariance shift and scale rule

Independence implies zero covariance

Suppose that  and  are any two random variables on a probability model.

If  and  are independent, then:

Proof:

We know both of these:

But , so those terms cancel and .

Sum rule for variance

Suppose that  and  are any two random variables on a probability space.

Then:

When  and  are independent:

Extra - Proof: Sum rule for variance
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12 Illustration

Extra - Proof that 

(1) Create standardizations:

Now  and  satisfy:

Observe that  for any . Variance can’t be negative.

(2) Apply the variance sum rule.

Apply to  and :

Simplify:

Notice effect of standardization:

Therefore .

(3) Modify and reapply variance sum rule.

Change to :

Simplify:

Variance of sum of indicators
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An urn contains 3 red balls and 2 yellow balls.

Suppose 2 balls are drawn without replacement, and  counts the number of red balls drawn.

Find .

Solution

Let  indicate (one or zero) whether the first ball is red, and  indicate whether the second ball is red, so
.

Then  indicates whether both drawn balls are red; so it is Bernoulli with success probability .
Therefore .

We also have .

The variance sum rule gives:

Exercise - Covariance rules

Simplify:

Exercise - Independent variables are uncorrelated

Let  be given with possible values  and PMF given uniformly by  for all three possible 
. Let .

Show that  and  are dependent but uncorrelated.

Hint: To speed the calculation, notice that .
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