
W09 Notes
Sums of random variables

01 Theory

02 Illustration

THEOREM: Continuous PDF of a sum

Let fX,Y (x, y) be any joint continuous PDF.

Suppose W = X + Y . Then:

fW (w) = ∫
+∞

−∞
fX,Y (w − x,x) dx

When X and Y  are independent, so fX,Y = fXfY , this becomes convolution:

fW (w) = fX ∗ fY = ∫
+∞

−∞

fX(w − x)fY (x) dx

Equally valid to integrate in the y-slot: fW (w) = ∫
+∞

−∞
fX,Y (x,w − x) dx

Extra - Derivation of X + Y  PDF

The joint CDF of X + Y :

FX+Y (w) = P [X + Y ≤ w] = ∬
x+y≤w

fX,Y (x, y) dx dy

Find fX+Y  by differentiating:

fX+Y (w) =
d

dw
FX+Y (w) ≫≫

d

dw
∬

x+y≤w

fX,Y (x, y) dx dy

To calculate this derivative, change variables by setting x = x and s = x + y. The Jacobian is 1, so dx dy
becomes dx dw, and we have:

≫≫
d

dw
∫

w

−∞
∫

+∞

−∞
fX,Y (x, s − x) dx ds ≫≫ ∫

+∞

−∞
fX,Y (x,w − x) dx

Example - Sum of parabolic random variables

Suppose X is an RV with PDF given by:

fX(x) = {

Let Y  be an independent copy of X. So fY = fX, but Y  is independent of X.

Find the PDF of X + Y .

Solution

3
4 (1 − x2) x ∈ [−1, 1]

0 otherwise
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03 Theory - extra

The graph of fX(w − x) matches the graph of fX(x) except (i) flipped in a vertical mirror, (ii) shifted by w to the
left.

When w ∈ [−2, 0], the integrand is nonzero only for x ∈ [−1,w + 1]:

When w ∈ [0, +2], the integrand is nonzero only for x ∈ [w − 1, +1]:

Final result is:

fX+Y (w) =

fX+Y (w) = ( 3

4
)

2

∫
w+1

−1

(1 − (w − x)2)(1 − x2) dx

=
9

16
( w5

30
−

2w3

3
−

4w2

3
+

16

15
)

fX+Y (w) = ( 3

4
)

2

∫
+1

w−1
(1 − (w − x)2)(1 − x2) dx

=
9

16
(−

w5

30
+

2w3

3
−

4w2

3
+

16

15
)

⎧⎪⎨⎪⎩ 9

16
( w5

30
−

2w3

3
−

4w2

3
+

16

15
) w ∈ [−2, 0]

9

16
(−

w5

30
+

2w3

3
−

4w2

3
+

16

15
) w ∈ [0, 2]

0 otherwise

Convolution

The convolution of two continuous functions f(x) and g(x) is defined by:

(f ∗ g)(x) = ∫
+∞

−∞
f(x − t)g(t) dt
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04 Illustration

For more example calculations, look at 9.6.1 and 9.6.2 at this page.

Applications of convolution

Convolutional neural networks (machine learning theory: translation invariant NN, low pre-processing)
Image processing: edge detection, blurring
Signal processing: smoothing and interpolation estimation
Electronics: linear translation-invariant (LTI) system response: convolution with impulse function

Extra - Convolution

Geometric meaning of convolution
Convolution does not have a neat and precise geometric meaning, but it does have an imprecise intuitive sense.

The product of two quantities tends to be large when both quantities are large; when one of them is small or
zero, the product will be small or zero. This behavior is different from the behavior of a sum, where one
summand being large is sufficient for the sum to be large. A large summand overrides a small co-summand,
whereas a large factor is scaled down by a small cofactor.

The upshot is that a convolution will be large when two functions have similar overall shape. (Caveat: one
function must be flipped in a vertical mirror before the overlay is considered.) The argument value where the
convolution is largest will correspond to the horizontal offset needed to get the closest overlay of the functions.

Algebraic properties of convolution

The last of these is not the typical Leibniz rule for derivatives of products!

All of these properties can be checked by simple calculations with iterated integrals.

Convolution in more variables
Given f, g : Rn → R, their convolution at x is defined by integrating the shifted products over the whole
domain:

(f ∗ g)(x) = ∭
Rn

f(x − y)g(y) dy

f ∗ g = g ∗ f

f ∗ (g ∗ h) = (f ∗ g) ∗ h

f ∗ (g + h) = f ∗ g + f ∗ h

a(f ∗ g) = (af) ∗ g = f ∗ (ag)

(f ∗ g)′ = f ′ ∗ g = f ∗ g′

Exercise - Convolution practice

Suppose X is an RV with density:

fX = {

Suppose Y  is uniform on [0, 1].

Find the PDF of X + Y . Sketch the graph of this PDF.

2x x ∈ [0, 1]
0 otherwise
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05 Theory

06 Illustration

Recall that in a Poisson process:

Since the wait times between arrivals are independent, we expect that the sum of exponential distributions is an
Erlang distribution. This is true!

X ∼ Exp(λ) measures continuous wait time until one arrival
X ∼ Erlang(ℓ,λ) measures continuous wait time until ℓth arrival

Erlang sum rule

Specify a given Bernoulli process with success probability p. Suppose that:

Then:

X + Y ∼ Erlang(r + s,λ)

X ∼ Erlang(r,λ)

Y ∼ Erlang(s,λ)

X and Y  are independent

Exp plus Exp is Erlang

Recall that Erlang(1,λ) ∼ Exp(λ).

So we could say:

“Exp(λ) + Exp(λ) ∼ Erlang(2,λ)”

And:

“Exp(λ) + Erlang(ℓ,λ) ∼ Erlang(ℓ + 1,λ)”

Example - Exp plus Exp equals Erlang

Let us verify this formula by direct calculation:

“Exp(λ) + Exp(λ) ∼ Erlang(2,λ)”

Solution

Let X, Y ∼ Exp(λ) be independent RVs.

Therefore:

fX = fY = {

Now compute the convolution:

λe−λx x ≥ 0
0 otherwise
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Expectation for two variables

07 Theory

This is the Erlang PDF:

fX(t) =
λℓ

(ℓ − 1)!
tℓ−1e−λt

ℓ=2

fX+Y (w) = ∫
+∞

−∞
fX(w − x)fY (x) dx

≫≫ ∫
w

0

λ2e−λ(w−x)e−λx dx

≫≫ λ2 ∫
w

0
e−λw dx ≫≫ λ2we−λw∣Exercise - Erlang induction step

By direct computation with PDFs and convolution, derive the formula:

“Exp(λ) + Erlang(ℓ,λ) ∼ Erlang(ℓ + 1,λ)”

Observation: By repeatedly applying the above formula, it follows that:

“

ℓ terms

Exp(λ) + ⋯ + Exp(λ) ∼ Erlang(ℓ,λ)”


These formulas are not trivial to prove, and we omit the proofs. (Recall the technical nature of the proof we gave for
E[ g(X) ] in the discrete case.)

We already know that expectation is linear in a single variable: E[aX + b] = aE[X] + b.

Therefore this two-variable formula implies:

Expectation for a function on two variables

Discrete case:

E[ g(X,Y ) ] = ∑
k,ℓ

g(k, ℓ)PX,Y (k, ℓ) (sum over possible values)

Continuous case:

E[ g(X,Y ) ] = ∫
+∞

−∞
∫

+∞

−∞
g(x, y) fX,Y (x, y) dx dy

Expectation sum rule

Suppose X and Y  are any two random variables on the same probability model.

Then:

E[X + Y ] = E[X] + E[Y ]
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08 Illustration

E[aX + bY + c] = aE[X] + bE[Y ] + c

Expectation product rule: independence

Suppose that X and Y  are independent.

Then we have:

E[XY ] = E[X]E[Y ]

Extra - Proof: Expectation sum rule, continuous case

Suppose fX and fY  give marginal PDFs for X and Y , and fX,Y  gives their joint PDF.

Then:

Observe that this calculation relies on the formula for E[ g(X,Y ) ], specifically with g(x, y) = x + y.

E[X + Y ] ≫≫ ∫
+∞

−∞
∫

+∞

−∞
(x + y)fX,Y (x, y) dx dy

≫≫ ∫
+∞

−∞

∫
+∞

−∞

xfX,Y dx dy + ∫
+∞

−∞

∫
+∞

−∞

yfX,Y dx dy

≫≫ ∫
+∞

−∞

xfX(x) dx + ∫
+∞

−∞

yfY (y) dy

≫≫ E[X] + E[Y ]

Extra - Proof: Expectation product rule

E[XY ] ≫≫ ∫
+∞

−∞
∫

+∞

−∞
(xy)fX,Y (x, y) dx dy

≫≫ ∫
+∞

−∞
∫

+∞

−∞
(xy)fX(x)fY (y) dx dy

≫≫ ∫
+∞

−∞

xfX(x) dx∫
+∞

−∞

yfY (y) dy

≫≫ E[X]E[Y ]

E[X 2 + Y ] from joint PMF chart

Suppose the joint PMF of X and Y  is given by this chart:

Y ↓ X → 1 2

−1 0.2 0.2

0 0.35 0.1

1 0.05 0.1

Define W = X 2 + Y . Find the expectation E[W ].

Solution
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First compute the values of W  for each pair (X,Y ) in the chart:

Y ↓ X → 1 2

−1 0 3

0 1 4

1 2 5

Now take the sum, weighted by probabilities:

≫≫ 1.95 = E[W ]
0 ⋅ (0.2) + 3 ⋅ (0.2) + 1 ⋅ (0.35)

+4 ⋅ (0.1) + 2 ⋅ (0.05) + 5 ⋅ (0.1)

Exercise - Understanding expectation for two variables

Suppose you know only that X ∼ Geo(p) and Y ∼ Bin(n, q).

Which of the following can you calculate?

E[X + Y ], E[XY ], E[X 2 + Y 2], E[(X + Y )2]

E[Y ] two ways, and E[XY ], from joint density

Suppose X and Y  are random variables with the following joint density:

fX,Y (x, y) = {

(a) Compute E[Y ] using two methods.

(b) Compute E[XY ].

Solution

(a)

(1) Method One: via marginal PDF fY (y):

fY (y) = ∫
2

0

3

16
xy2 dx ≫≫ {

Then expectation:

E[Y ] = ∫
2

0
y fY (y) dy ≫≫ ∫

2

0

3

8
y3 dy ≫≫ 3/2

(2) Method Two: directly, via two-variable formula:

E[Y ] = ∫
2

0

∫
2

0

y ⋅
3

16
xy2 dy dx ≫≫ ∫

2

0

3

4
x dx ≫≫ 3/2

(b) Directly, via two-variable formula:

3
16 xy

2 x, y ∈ [0, 2]

0  otherwise 

3
8
y2 y ∈ [0, 2

0 otherwise
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Covariance and correlation

09 Theory

E[XY ] = ∫
2

0
∫

2

0
xy ⋅

3

16
xy2 dy dx

≫≫ ∫
2

0

3

4
x2 dx ≫≫ 2

Write μX = E[X] and μY = E[Y ].

Observe that the random variables X − μX and Y − μY  are “centered at zero,” meaning that
E[X − μX] = 0 = E[Y − μY ].

To derive the shorter formula, first expand the product (X − μX)(Y − μY ) and then apply linearity.

Notice that covariance is always symmetric:

Cov[X,Y ] = Cov[Y ,X]

The self covariance equals the variance:

Cov[X,X] = Var[X]

The sign of Cov[X,Y ] reveals the correlation type between X and Y :

Correlation Sign

Positively correlated Cov(X,Y ) > 0

Negatively correlated Cov(X,Y ) < 0

Uncorrelated Cov(X,Y ) = 0

Covariance

Suppose X and Y  are any two random variables on a probability model. The covariance of X and Y  measures
the typical synchronous deviation of X and Y  from their respective means.

Then the defining formula for covariance of X and Y  is:

Cov[X,Y ] = E[ (X − μX)(Y − μY ) ]

There is also a shorter formula:

Cov[X,Y ] = E[XY ] − μXμY

Correlation coefficient

Suppose X and Y  are any two random variables on a probability model.

Their correlation coefficient is a rescaled version of covariance that measures the synchronicity of
deviations:

ρ[X,Y ] =
Cov[X,Y ]

σXσY

The rescaling ensures:

−1 ≤ ρX,Y ≤ +1
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10 Illustration

11 Theory

Covariance depends on the separate variances of X and Y  as well as their relationship.

Correlation coefficient, because we have divided out σXσY , depends only on their relationship.

Covariance from PMF chart

Suppose the joint PMF of X and Y  is given by this chart:

Y ↓ X → 1 2

−1 0.2 0.2

0 0.35 0.1

1 0.05 0.1

Find Cov[X,Y ].

Solution

We need E[X] and E[Y ] and E[XY ].

E[X] = 1 ⋅ (0.2 + 0.35 + 0.05) + 2 ⋅ (0.2 + 0.1 + 0.1) ≫≫ 1.4

E[XY ] = −1 ⋅ (0.2) − 2 ⋅ (0.2) + 0 + 1 ⋅ (0.05) + 2 ⋅ (0.1) ≫≫ −0.35

Therefore:

E[Y ] = −1 ⋅ (0.2 + 0.2) + 0 ⋅ (0.35 + 0.1) + 1 ⋅ (0.05 + 0.1)

≫≫ −0.25

Cov[X,Y ] = E[XY ] − E[X]E[Y ]

≫≫ −0.35 − (1.4)(−0.25) ≫≫ 0

Covariance bilinearity

Given any three random variables X, Y , and Z, we have:

Cov[X + Y , Z ] = Cov[X,Z] + Cov[Y ,Z]

Cov[Z, X + Y ] = Cov[Z,X] + Cov[Z,Y ]

Covariance and correlation: shift and scale

Covariance scales with each input, and ignores shifts:
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Cov[ aX + b, Y ] = aCov[X,Y ] = Cov[X, aY + b ]

Whereas shift or scale in correlation only affects the sign:

ρ[ aX + b, Y ] = sign(a) ρ[X,Y ] = ρ[X, aY + b ]

Extra - Proof of covariance bilinearity

Cov[X + Y , Z] ≫≫ E[(X + Y − (μX + μY ))(Z − μZ)]

≫≫ E[(X − μX + Y − μY )(Z − μZ)]

≫≫ E[(X − μX)(Z − μZ)] + E[(Y − μY )(Z − μZ)]

≫≫ Cov[X,Z] + Cov[Y ,Z]

Extra - Proof of covariance shift and scale rule

Cov[aX + b,Y ] ≫≫ E[(aX + b)Y ] − E[aX + b]E[Y ]

≫≫ E[aXY + bY ] − aE[X]E[Y ] − E[b]E[Y ]

≫≫ aE[XY ] + bE[Y ] − aE[X]E[Y ] − bE[Y ]

≫≫ a(E[XY ] − E[X]E[Y ])

Independence implies zero covariance

Suppose that X and Y  are any two random variables on a probability model.

If X and Y  are independent, then:

Cov[X,Y ] = 0

Proof:

We know both of these:

But E[XY ] = E[X]E[Y ] = μXμY , so those terms cancel and Cov[X,Y ] = 0.

E[XY ] = E[X]E[Y ]

Cov[X,Y ] = E[XY ] − μXμY

(independence)

(shorter form)

Sum rule for variance

Suppose that X and Y  are any two random variables on a probability space.

Then:

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov[X,Y ]

When X and Y  are independent:

Var[X + Y ] = Var[X] + Var[Y ]

Extra - Proof: Sum rule for variance
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12 Illustration

Var[X + Y ] ≫≫ E[ (X + Y − (μX + μY ))2 ]

≫≫ E[ ((X − μX) + (Y − μY ))2 ]

≫≫ E[ (X − μX)2 + (Y − μY )2 + 2(X − μX)(Y − μY ) ]

≫≫ Var[X] + Var[Y ] + 2Cov[X,Y ]

Extra - Proof that −1 ≤ ρ ≤ +1

(1) Create standardizations:

~
X =

X − μX

σX
,

~
Y =

Y − μY

σY

Now ~
X and ~

Y  satisfy:

E[
~
X] = 0 = E[

~
Y ] and Var[

~
X] = 1 = Var[

~
Y ]

Observe that Var[W ] ≥ 0 for any W . Variance can’t be negative.

(2) Apply the variance sum rule.

Apply to ~
X and ~

Y :

0 ≤ Var[
~
X +

~
Y ] = Var[

~
X] + Var[

~
Y ] + 2Cov[

~
X,

~
Y ]

Simplify:

Notice effect of standardization:

Cov[
~
X,

~
Y ] = ρ[X,Y ]

Therefore ρ[X,Y ] ≥ −1.

(3) Modify and reapply variance sum rule.

Change to ~
X −

~
Y :

0 ≤ Var[
~
X −

~
Y ] = Var[

~
X] + Var[−

~
Y ] + 2Cov[

~
X, −

~
Y ]

Simplify:

≫≫ 1 + 1 + 2Cov[
~
X,

~
Y ] ≥ 0

≫≫ 1 + Cov[
~
X,

~
Y ] ≥ 0

≫≫ 1 + 1 − 2Cov[
~
X,

~
Y ] ≥ 0

≫≫ 1 − Cov[
~
X,

~
Y ] ≥ 0

Variance of sum of indicators
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An urn contains 3 red balls and 2 yellow balls.

Suppose 2 balls are drawn without replacement, and X counts the number of red balls drawn.

Find Var[X].

Solution

Let X1 indicate (one or zero) whether the first ball is red, and X2 indicate whether the second ball is red, so
X = X1 + X2.

Then X1X2 indicates whether both drawn balls are red; so it is Bernoulli with success probability 3
5

2
4 = 3

10 .
Therefore E[X1X2] = 3

10 .

We also have E[X1] = E[X2] = 3
5

.

The variance sum rule gives:

Var[X] = Var[X1] + Var[X2] + 2Cov[X1,X2]

≫≫ E[X 2
1 ] − E[X1]2 + E[X 2

2 ] − E[X2]2 + 2(E[X1X2] − E[X1]E[X2])

≫≫
3

5
− ( 3

5
)

2

+
3

5
− ( 3

5
)

2

+ 2( 3

10
−

3

5
⋅

3

5
) ≫≫

9

25

Exercise - Covariance rules

Simplify:

Cov[ 2X + 5Y + 1, Z + 8W + X + 9 ]

Exercise - Independent variables are uncorrelated

Let X be given with possible values {−1, 0, +1} and PMF given uniformly by PX(k) = 1/3 for all three possible k
. Let Y = X 2.

Show that X and Y  are dependent but uncorrelated.

Hint: To speed the calculation, notice that X 3 = X.
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