W02 - Examples

Bayes' Theorem

Bayes' Theorem: COVID tests

Assume that 0.5% of people have COVID. Suppose a COVID test gives a (true) positive on 96% of patients who have COVID, but gives a (false) positive on 2% of patients who do not have COVID. Bob tests positive. What is the probability that Bob has COVID?

Solution

(1) Label events.

Event A_P : Bob is actually positive for COVID

Event A_N : Bob is actually negative; note $A_N = A_P^c$

Event T_P : Bob tests positive

Event T_N : Bob tests negative; note $T_N = T_P^c$

(2) Identify knowns.

Know: $P[T_P \mid A_P] = 96\%$

Know: $P[T_P \mid A_N] = 2\%$

Know: $P[A_P]=0.5\%$ and therefore $P[A_N]=99.5\%$

We seek: $P[A_P \mid T_P]$

(3)

Translate Bayes' Theorem.

Using $A = T_P$ and $B = A_P$ in the formula:

$$P[A_P \mid T_P] = P[A_P] \cdot rac{P[T_P \mid A_P]}{P[T_P]}$$

We know all values on the right except $P[T_P]$

(4)

△ Use Division into Cases.

Observe:

Division into Cases yields:

$$P[T_P] = P[A_P] \cdot P[T_P \mid A_P] + P[A_N] \cdot P[T_P \mid A_N]$$

Important to notice this technique!

- It is a common element of Bayes' Theorem application problems.
- It is frequently needed for the denominator.

Plug in data and compute:

$$\gg\gg P[T_P] = rac{5}{1000} \cdot rac{96}{100} + rac{995}{1000} \cdot rac{2}{100} \gg\gg pprox 0.0247$$

(5) Compute answer.

Plug in and compute:

$$P[A_P \mid T_P] = P[A_P] \cdot rac{P[T_P \mid A_P]}{P[T_P]}$$

$$\gg \gg 0.96 \cdot \frac{0.005}{0.0247} \gg \approx 19\%$$

& Intuition - COVID testing

Some people find the low number surprising. In order to repair your intuition, think about it like this: roughly 2.5% of tests are positive, with roughly 2% coming from *false* positives, and roughly 0.5% from *true* positives. The true ones make up only 1/5 of the positive results!

(This rough approximation is by assuming 96% = 100%.)

If *two* tests both come back positive, the odds of COVID are now 98%.

If only people with symptoms are tested, so that, say, 20% of those tested have COVID, that is, $P[A_P \mid T_P] = 20\%$, then one positive test implies a COVID probability of 92%.

Inferring bin from marble

There are marbles in bins in a room:

- Bin 1 holds 7 red and 5 green marbles.
- Bin 2 holds 4 red and 3 green marbles.

Your friend goes in the room, shuts the door, and selects a random bin, then draws a random marble. (Equal odds for each bin, then equal odds for each marble in that bin.) He comes out and shows you a red marble.

What is the probability that this red marble was taken from Bin 1?

Solution

Independence

Independence and complements

Prove that these are logically equivalent statements:

- A and B are independent
- A and B^c are independent
- A^c and B^c are independent

Make sure you demonstrate both directions of each equivalency.

Solution

Independence by hand: red and green marbles

A bin contains 4 red and 7 green marbles. Two marbles are drawn.

Let R_1 be the event that the first marble is red, and let G_2 be the event that the second marble is green.

- (a) Show that R_1 and G_2 are independent if the marbles are drawn with replacement.
- (b) Show that R_1 and G_2 are not independent if the marbles are drawn without replacement.

Solution

- (a) With replacement.
- (1) Identify knowns.

Know: $P[R_1] = \frac{4}{11}$

Know: $P[G_2] = \frac{7}{11}$

(2) Compute both sides of independence relation.

Relation is $P[R_1G_2] = P[R_1] \cdot P[G_2]$

Right side is $\frac{4}{11} \cdot \frac{7}{11}$

For $P[R_1G_2]$, have $4 \cdot 7$ ways to get R_1G_2 , and 11^2 total outcomes.

So left side is $\frac{4\cdot7}{11^2}$, which equals the right side.

- (b) Without replacement.
- (1) Identify knowns.

Know: $P[R_1] = \frac{4}{11}$ and therefore $P[R_1^c] = \frac{7}{11}$

We seek: $P[G_2]$ and $P[R_1G_2]$

(2) Find $P[G_2]$ using Division into Cases.

Division into cases:

$$G_2=G_2\cap R_1$$
 [] $G_2\cap R_1^c$

Therefore:

$$P[G_2] = P[R_1] \cdot P[G_2 \mid R_1] + P[R_1^c] \cdot P[G_2 \mid R_1^c]$$

Find these by counting and compute:

$$\gg\gg P[G_2] = rac{4}{11} \cdot rac{7}{10} + rac{7}{11} \cdot rac{6}{10} \gg\gg rac{70}{110}$$

(3) Find $P[R_1G_2]$ using Multiplication rule.

Multiplication rule (implicitly used above already):

$$P[R_1G_2] = P[R_1] \cdot P[G_2 \mid R_1] \quad \gg \gg \quad \frac{4}{11} \cdot \frac{7}{10} \quad \gg \gg \quad \frac{28}{110}$$

(4) Compare both sides.

Left side: $P[R_1G_2] = \frac{28}{110}$

Whereas, right side:

$$P[R_1] \cdot P[G_2] = \frac{4}{11} \cdot \frac{70}{110} = \frac{28}{121}$$

But $\frac{28}{110} \neq \frac{28}{121}$ so $P[R_1G_2] \neq P[R_1] \cdot P[G_2]$ and they are *not independent*.

Tree diagrams

Marble transferred, marble drawn

Setup:

- Bin 1 holds five red and four green marbles.
- Bin 2 holds four red and five green marbles.

Experiment:

- You take a random marble from Bin 1 and put it in Bin 2 and shake Bin 2.
- Then you draw a random marble from Bin 2 and look at it.

Questions:

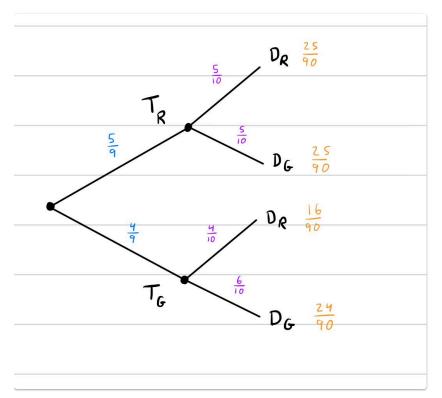
(a) What is the probability you *draw* a red marble?

(b) Supposing that you drew a red marble, what is the probability that a red marble was transferred?

Solution

(1) Construct the tree diagram.

Identify sub-experiments, label events, compute probabilities:



(2) For (a), compute $P[D_R]$.

Add up leaf numbers for D_R at leaf:

$$P[D_R] = rac{25}{90} + rac{16}{90} = rac{41}{90}$$

(3) For (b), compute $P[T_R \mid D_R]$.

Conditional probability:

$$P[T_R \mid D_R] = \frac{P[T_R D_R]}{P[D_R]}$$

Plug in data and compute:

$$\gg \gg \frac{25/90}{41/90} \gg \approx \frac{25}{41}$$

Interpretation: mass of desired pathway over mass of possible pathways.

Counting

Counting teams with Cooper

A team of 3 student volunteers is formed at random from a class of 40. What is the probability that Cooper is on the team?

Solution

Haley and Hugo from 2 groups of 3

The class has 40 students. Suppose the professor chooses 3 students Wednesday at random, and again 3 on Friday. What is the probability that Haley is chosen today and Hugo on Friday?

Solution

(1) Count total outcomes.

Have $\binom{40}{3}$ possible groups chosen Wednesday.

Have $\binom{40}{3}$ possible groups chosen Friday.

Therefore ${40 \choose 3} \times {40 \choose 3}$ possible groups in total.

(2) Count desired outcomes.

Groups of 3 with Haley are same as groups of 2 taken from others.

Therefore have $\binom{39}{2}$ groups that contain Haley.

Have $\binom{39}{2}$ groups that contain Hugo.

Therefore $\binom{39}{2} \times \binom{39}{2}$ total desired outcomes.

(3) Compute probability.

Let E label the desired event.

Use formula:

$$P[E] = \frac{|E|}{|S|}$$

Therefore:

$$P[E]$$
 $\gg\gg$ $\frac{\binom{39}{2}\times\binom{39}{2}}{\binom{40}{3}\times\binom{40}{3}}$

$$\gg \gg \left(\frac{\frac{39\cdot38}{2!}}{\frac{40\cdot39\cdot38}{3!}}\right)^2 \gg \gg \left(\frac{3}{40}\right)^2$$

Counting VA license plates

 $A\ VA$ license plate has three letters (with no I, O, or Q) followed by four numerals. A random plate is seen on the road.

- (a) What is the probability that the numerals are in increasing order?
- (b) What is the probability that at least one number is repeated?

Solution

- (a)
- (1) Count ways to have 4 numerals in increasing order.

Any four distinct numerals have a single order that's increasing.

There are $\binom{10}{4}$ ways to choose 4 numerals from 10 options.

(2) Count ways to have 3 letters in order except I, O, Q.

26 total letters, 3 excluded, thus 23 options.

Repetition allowed, thus $23 \cdot 23 \cdot 23 = 23^3$ possibilities.

(3) Count total plates with increasing numerals.

Multiply the options:

$$23^3 \cdot \binom{10}{4}$$

(4) Count total plates.

Have $23 \cdot 23 \cdot 23$ options for letters.

Have $10 \cdot 10 \cdot 10 \cdot 10$ options for numbers.

Thus $23^3 \cdot 10^4$ possible plates.

(5) Compute probability.

Let E label the event that a plate has increasing numerals.

Use the formula:

$$P[E] = \frac{|E|}{|S|}$$

Therefore:

$$P[E]$$
 $\gg\gg$ $\frac{23^3\cdot\binom{10}{4}}{23^3\cdot10^4}$ $\gg\gg$ $\frac{\frac{10!}{4!6!}}{10000}$ $\gg\gg$ $\frac{21}{1000}$

(b)

(1) Count plates with at least one number repeated.

"At least" is hard! Try complement: "no repeats".

Let E^c be event that no numbers are repeated. All distinct.

Count possibilities:

$$|E^c| = 23 \cdot 23 \cdot 23 \cdot 10 \cdot 9 \cdot 8 \cdot 7$$

Total license plates is still $23^3 \cdot 10^4$.

Therefore, license plates with at least one number repeated:

$$|E| = |S| - |E|$$

$$\gg 23^3 \cdot 10^4 - 23^3 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \gg 60348320$$

(2) Compute probability.

Desired outcomes over total outcomes:

$$\frac{|E|}{|S|}$$
 >>> $\frac{60348320}{23^3 \cdot 10^4}$ >>> 0.496

Counting out 4 teams

A board game requires 4 teams of players. How many configurations of teams are there out of a total of 17 players if the number of players per team is 4, 4, 4, 5, respectively.

Solution