

W02 Homework B

01

Multiplication - drawing two hearts

Two cards are drawn from a standard deck (without replacement).

- (a) What is the probability that both are hearts?
- (b) What is the probability that both are 4?

☒ Syntax errors vs. logic errors, Part A

A computer program may contain a syntax error or a logic error or both types of errors. The probability that a program has both types of error is 0.16. The probability that a program has a syntax error given that it has a logic error is 0.4. The probability that a program has a logic error given that it has a syntax error is 0.5.

Find the probability that a particular program has at least one type of error.

 Bayes' Theorem - Inferring die from roll

A bag contains one 4-sided die, one 6-sided die, and one 12-sided die. You draw a random die from the bag, roll it, and get a 4.

What is the probability that you drew the 6-sided die?

☒ Syntax errors vs. logic errors, Part B

A computer program may contain a syntax error or a logic error or both types of errors. The probability that a program has both types of error is 0.16. The probability that a program has a syntax error given that it has a logic error is 0.4. The probability that a program has a logic error given that it has a syntax error is 0.5.

Are the events “program has a syntax error” and “program has a logic error” independent? Justify your answer.

 Pairwise independent, not mutually independent: three coin flips

Flip a coin three times in sequence. Label events like this:

- A – exactly one heads among first and second flips
- B – exactly one heads among second and third flips
- C – exactly one heads among first and third flips

Verify that A, B, C are *pairwise* independent but not actually *mutually* independent.

🔗 Homework part errors

A homework problem has 10 different parts. You submit and are told that 4 of the 10 answers you provided are incorrect, but you are not told which parts are incorrect.

- (a) What is the probability you will have gotten the first part correct and the second part incorrect? Draw a tree diagram.
- (b) Suppose the 4 errors have occurred in the first 6 parts. In this case, how many possible arrangements are there for these 4 errors?
- (c) What is the probability the 4 errors occurred in the first 6 parts?

 Counting passwords

Suppose a password must be created using 5 letters and 6 digits. (There are 26 letters, a-z, and 10 digits, 0-9.) No letter or digit may be repeated.

- (a) How many unique passwords can be created if the letters must come first and the digits last?
- (b) How many unique passwords can be created if the 5 letters and 6 digits can appear in any order?

 Drawing balls of distinct color

A bin contains 3 green and 4 yellow balls. Two balls are drawn out.

What is the probability that they are different colors?

☒ Wisconsin flag 2 of 3 days

A kindergarten class hangs a random state flag (50 flags) on the wall every day. What is the probability that two days out of three given days have Wisconsin's flag?

 Inclusion-exclusion reasoning

Suppose $P[A] = 0.4$ and $P[B] = 0.7$. Show that $0.1 \leq P[AB] \leq 0.4$.