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Note: Bayes’ Theorem is sometimes called Bayes’ Rule.

The main application of Bayes’ Theorem is to calculate P [A ∣ B] when it is easy to calculate P [B ∣ A]

from the problem setup. Often this occurs in multi-stage experiments where event A describes
outcomes of an intermediate stage.

Note: These lecture notes use alphabetical order A, B as a mnemonic for temporal or logical order, i.e.
that A comes first in time, or that A is the prior conditional from which it is easy to calculate B.

Bayes’ Theorem

For any events A and B:

P [B ∣ A] = P [B] ⋅
P [A ∣ B]

P [A]

Bayes’ Theorem - Derivation

Start with the observation that AB = BA, in other words event “A AND B” equals event “B AND
A”.

Apply the multiplication rule to each product:

Equate them and rearrange:

P [AB] = P [A] ⋅ P [B ∣ A]

P [BA] = P [B] ⋅ P [A ∣ B]

P [AB] = P [BA] ≫≫ P [A] ⋅ P [B ∣ A] = P [B] ⋅ P [A ∣ B]

≫≫ P [B ∣ A] = P [B] ⋅
P [A ∣ B]

P [A]

Example - Bayes’ Theorem - COVID tests

Assume that 0.5% of people have COVID. Suppose a COVID test gives a (true) positive on 96%
of patients who have COVID, but gives a (false) positive on 2% of patients who do not have
COVID. Bob tests positive. What is the probability that Bob has COVID?

Solution

(1) Label events:
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(2) Identify known data:

We seek: P [AP ∣ TP ]

(3) Translate Bayes’ Theorem:

Set A = TP  and B = AP  in Bayes’:

P [AP ∣ TP ] = P [AP ] ⋅
P [TP ∣ AP ]

P [TP ]

We know all values on the right except P [TP ]

(4) Denominator: apply Total Probability (Division into Cases):

Observe that TP ∩ AP  and TP ∩ AN  are exclusive events, and that:

TP = TP ∩ AP ⋃ TP ∩ AN .

Therefore:

P [TP ] = P [AP ] ⋅ P [TP ∣ AP ] + P [AN ] ⋅ P [TP ∣ AN ]

Plug in data and compute:

≫≫ P [TP ] =
5

1000
⋅

96

100
+

995

1000
⋅

2

100
≫≫ ≈ 0.0247

(5) Plug in and compute:

Event AP : Bob is actually positive for COVID
Event AN : Bob is actually negative; note AN = Ac

P

Event TP : Bob tests positive
Event TN : Bob tests negative; note TN = T c

P

Know: P [TP ∣ AP ] = 96%

Know: P [TP ∣ AN ] = 2%

Know: P [AP ] = 0.5% and therefore P [AN ] = 99.5%

P [AP ∣ TP ] = P [AP ] ⋅
P [TP ∣ AP ]

P [TP ]

≫≫ 0.96 ⋅
0.005

0.0247
≫≫ ≈ 19%

Intuition - COVID testing

Some people find this low number surprising. In order to repair your intuition, think about
it like this: roughly 2.5% of tests are positive, with roughly 2% coming from false positives,
and roughly 0.5% from true positives. Only 1/5 of all the positive results are true ones!



(This rough approximation assumes that 96% ≈ 100%.)

If two tests both come back positive, the odds of COVID are now 98%.

If only people with symptoms are tested, so that, say, 20% of those tested have COVID, that
is, P [AP ∣ TP ] = 20%, then one positive test implies a COVID probability of 92%.

Practice exercise

There are marbles in bins in a room:

Your friend goes in the room, shuts the door, and selects a random bin, then draws a random
marble. (Equal odds for each bin, then equal odds for each marble in that bin.) He comes out and
shows you a red marble.

What is the probability that this red marble was taken from Bin 1?

Bin 1 holds 7 red and 5 green marbles.
Bin 2 holds 4 red and 3 green marbles.

Solution ​

(1) Label events:

Answer will be P [B1 ∣ R].

(2) Identify knowns:

(3) Apply Bayes’ Theorem for P [B1 ∣ R]::

P [B1 ∣ R] = P [R ∣ B1] ⋅
P [B1]

P [R]

Division into Cases for the denominator:

P [R] = P [B1] ⋅ P [R ∣ B1] + P [B2] ⋅ P [R ∣ B2]

Event B1: friend chooses Bin 1.
Event B2: friend chooses Bin 2.
Event R: friend draws a red marble.
Event G: friend draws a green marble.

Know P [R ∣ B1] = 7/12.
Know P [G ∣ B1] = 5/12.
Know P [R ∣ B2] = 4/7.
Know P [G ∣ B2] = 3/7.
Know P [B1] = P [B2] = 1/2.
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(3) Plug in data and compute:

P [R] ≫≫
1

2
⋅

7

12
+

1

2
⋅

4

7
≫≫

97

168

P [B1 ∣ R] ≫≫
7

12
⋅

1/2

97/168
≫≫

49

97

Two events are independent when information about one of them does not change our probability
estimate for the other.

Note that the last equation is symmetric in A and B:

Independence

Events A and B are independent when these (logically equivalent) equations hold:

P [B ∣ A] = P [B]

P [A ∣ B] = P [A]

P [BA] = P [B] ⋅ P [A]

Check: BA = AB  and P [B] ⋅ P [A] = P [A] ⋅ P [B]

This symmetric version is the preferred definition of the concept of independence.

Multiple-independence

A collection of events A1, … , An is mutually independent when every subcollection
Ai1

, … , Aik
 satisfies:

P [Ai1
⋯ Aik

] = P [Ai1
] ⋯ P [Aik

]

A potentially weaker condition for a collection A1, … , An is called pairwise independence,
which holds when all 2-member subcollections are independent:

P [AiAj] = P [Ai] ⋅ P [Aj] for all i ≠ j

One could also define 3-member independence, or n-member independence. Plain ‘independence’
means any-member independence.

Practice exercise

Prove that these are logically equivalent statements:

A and B are independent
A and Bc are independent
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Make sure you demonstrate both directions of each equivalency.

Ac and Bc are independent

Solution ​

(1) Show that P [AB] = P [A] ⋅ P [B] ⟺ P [ABc] = P [A] ⋅ P [Bc]

Assume P [AB] = P [A] ⋅ P [B] and show P [ABc] = P [A] ⋅ P [Bc].

Divide A into the B cases:

P [A] = P [AB] + P [ABc]

Apply the assumption:

≫≫ P [A] = P [A] ⋅ P [B] + P [ABc]

Algebra:

≫≫ P [A](1 − P [B]) = P [ABc]

Negation rule:

≫≫ P [A] ⋅ P [Bc] = P [ABc]

Assume P [ABc] = P [A] ⋅ P [Bc] and show P [AB] = P [A] ⋅ P [B].

In the above sequence, apply this assumption to break up the second term instead.

(2) Show that P [ABc] = P [A] ⋅ P [Bc] and P [AcBc] = P [Ac] ⋅ P [Bc] are equivalent.

To do this, simply notice that in the first equivalence we can replace A with Bc and B with
A. Use AB = BA too.

Example - Checking independence by hand

A bin contains 4 red and 7 green marbles. Two marbles are drawn.

Let R1 be the event that the first marble is red, and let G2 be the event that the second marble is
green.

(a) Show that R1 and G2 are independent if the marbles are drawn with replacement.

(b) Show that R1 and G2 are not independent if the marbles are drawn without replacement.

Solution

(a) With replacement.

Identify knowns:

Know: P [R1] = 4
11

Know: P [G2] = 7
11



Tree diagrams
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Now compute both sides of independence relation:

P [R1G2] = P [R1] ⋅ P [G2]

The right side is 4
11 ⋅ 7

11 .

For P [R1G2], we have 4 ⋅ 7 ways to get R1G2, and 112 total outcomes. So left side is 4⋅7
112 , which

equals the right side.

(b) Without replacement. This is a bit harder.

(1) Identify knowns:

Know: P [R1] = 4
11

 and therefore P [Rc
1] = 7

11

We seek: P [G2] and P [R1G2]

(2) Find P [G2] using Total Probability (Division into Cases):

Find RHS factors by counting, then compute:

≫≫ P [G2] =
4

11
⋅

7

10
+

7

11
⋅

6

10
≫≫

70

110

(3) Find P [R1G2] using multiplication rule:

P [R1G2] = P [R1] ⋅ P [G2 ∣ R1] ≫≫
4

11
⋅

7

10
≫≫

28

110

(4) Compare both sides:

Left side: P [R1G2] = 28
110 .

Right side:

P [R1] ⋅ P [G2] =
4

11
⋅

70

110
=

28

121

But 28
110

≠ 28
121

 so P [R1G2] ≠ P [R1] ⋅ P [G2] and they are not independent.

G2 = G2 ∩ R1 ⋃ G2 ∩ Rc
1

≫≫ P [G2] = P [R1] ⋅ P [G2 ∣ R1] + P [Rc
1] ⋅ P [G2 ∣ Rc

1]

A tree diagram depicts the components of a multi-stage experiment. Nodes represent sources of
randomness.
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06 Illustration

An outcome of the experiment is represented by a complete path taken from the root (left-most node,
only one option) to a leaf (right-most node, many options). The branch chosen at a given node
represents the outcome of a “sub-experiment.” So a complete path encodes the outcomes of all sub-
experiments along the way.

Each branch emanating from a node is labeled with a probability value. This is the probability that
the sub-experiment of that node has the outcome of that branch. (In the example, 0.8 = P [A ∣ B1].)
This is also the conditional probability of the branch’s right node, given its left node as known.

Therefore, branch values from any given node must sum to 1.

The probability of a given outcome is the product of the probabilities along each branch of the path
from the root to that outcome.

For example, for outcome AB1, we have P [AB1] = P [A] ⋅ P [B1 ∣ A].

Generally, remember that

This overall outcome probability may be written at the final leaf. (Not to be confused with the branch
value of the last branch.)

One can also use a tree diagram to remember quickly how to calculate certain probabilities.

For example, what is P [A] in the diagram?

0.24 + 0.36 + 0.18 ≫≫ 0.78

For example, what is P [B1 ∣ N ]?

P [B1 ∣ N ] =
0.06

0.06 + 0.04 + 0.12
≈ 0.27

P [ABCD] = P [ABC] ⋅ P [D ∣ ABC]

= P [AB] ⋅ P [C ∣ AB] ⋅ P [D ∣ ABC]

= P [A] ⋅ P [B ∣ A] ⋅ P [C ∣ AB] ⋅ P [D ∣ ABC]

Answer: add up the path probabilities for all paths terminating in A. We obtain:

Answer: divide the leaf probability of B1N  by the total probability of N . We obtain:

Example - Tree diagrams: Marble transferred, marble drawn

Setup:

Bin 1 holds five red and four green marbles.
Bin 2 holds four red and five green marbles.
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Counting
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Experiment:

Questions:

(a) What is the probability you draw a red marble?

(b) Supposing that you drew a red marble, what is the probability that a red marble was
transferred?

Solution

Construct the tree diagram:

Identify sub-experiments, label events, compute probabilities:

(a) Compute P [DR]:

Add up leaf numbers for DR at leaf:

P [DR] =
25

90
+

16

90
=

41

90

(b) Compute P [TR ∣ DR]:

Conditional probability definition:

Interpretation: value of desired path over value of all possible paths.

You take a random marble from Bin 1 and put it in Bin 2 and shake Bin 2.
Then you draw a random marble from Bin 2 and look at it.

P [TR ∣ DR] =
P [TRDR]

P [DR]

≫≫
25/90

41/90
≫≫

25

41
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In many “games of chance,” it is assumed based on symmetry principles that all outcomes are equally
likely. From this assumption we infer a rule for the probability measure P [−].

P [A] =
|A|

|S|

In words: the probability of event A is the number of outcomes in A divided by the total number of
possible outcomes.

When this formula applies, it is important to be able to count the total outcomes as well as the
outcomes that satisfy various conditions.

Why is this formula true?

There are n choices for the first item. Then n − 1 for the second item, after the first has been chosen
and removed from the set of possibilities. Then n − 2 for the third, then ..., then n − r + 1 for the rth

item. So the total number of possibilities is the product:

n(n − 1)(n − 2) ⋯ (n − r + 1)

We can express this with factorials using a technical observation:

This formula can be derived from the formula for permutations.

The set of possible permutations can be partitioned into combinations: each combination determines
a subset. By additionally specifying an ordering of the elements in a chosen subset, we obtain a
permutation. For a given subset of r elements taken from n items, there are r! ways to determine an
ordering of them in a list. Therefore, the number of permutations must be a factor of r! times the
number of combinations. (For every combination of size r, there are r! ways to order the items in a
list.)

The notation (n
r) is also called the binomial coefficient because it provides the coefficient values of

a binomial expansion:

Permutations

Permutations count the number of ordered lists one can form from a set of items. For a list of r
items taken from a total collection of n items, the number of permutations is:

P(n, r) =
n!

(n − r)!

n!

(n − r)!
=

n(n − 1)(n − 2) ⋯ (n − r + 1)(n − r)(n − r − 1) ⋯ 1

(n − r)(n − r − 1) ⋯ 1

≫≫ n(n − 1)(n − 2) ⋯ (n − r + 1)

Combinations

Combinations count the number of subsets (ignoring order) one can form from some items. For
a subset of r items taken from a total collection of n items, the number of combinations is:

C(n, r) = (n

r
) =

n!

r!(n − r)!



08 Illustration

(x + y)n =
n

∑
i=1

(n

i
)xn−iyi

For example:

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

There are also higher combinations that give multinomial coefficients:

Notice that ( 5
3,2

) = (5
3
), so we have already defined these values (i.e. with k = 2) when we defined

binomial coefficients. But when k > 2, the formula gives new values. They correspond to the
coefficients in multinomial expansions. For example, k = 3 gives the coefficients for (x + y + z)n.

Multinomial coefficient

The general multinomial coefficient is defined by the formula:

( n

r1, r2, … , rk
) =

n!

r1!r2! ⋯ rk!

where ri ∈ N and r1 + r2 + ⋯ + rk = n.

The multinomial coefficient measures the number of ways to partition n items into subsets with
sizes r1, r2, … , rk, respectively.

Practice exercise

A team of 3 student volunteers is formed at random from a class of 40. What is the probability
that Cooper is on the team?

Solution ​

There are ( ) teams that include Cooper, and ( ) teams in total. So we have:

P =
39!

2!37!
/ 40!

3!37!
=

3

40

39

2

40

3

Example - Combinations: Groups with Haley and Hugo

A UVA class has 40 students. Suppose the professor chooses 3 students on Wednesday at
random, and again 3 on Friday. What is the probability that Haley is chosen today and Hugo on
Friday?

Solution

(1) Count total outcomes:

We have (40
3
) possible groups chosen Wednesday.

We have (40
3
) possible groups chosen Friday.
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Therefore (40
3
) × (40

3
) possible groups in total. (Product of possibilities.)

(2) Count desired outcomes:

The possible groups of 3 that include Haley can be counted by counting the subgroups of 2
formed of the other students in Haley’s group.

Therefore we count (39
2 ) × (39

2 ) total desired outcomes.

(3) Compute probability:

Let E label the desired event. By the counting rule:

P [E] =
|E|

|S|

Evaluate using our data:

Therefore we have (39
2 ) groups that contain Haley.

Similarly, we have (39
2 ) groups that contain Hugo.

P [E] ≫≫
(39

2 ) × (39
2 )

(40
3 ) × (40

3 )

≫≫ (
39⋅38

2!
40⋅39⋅38

3!

)
2

≫≫ ( 3

40
)

2

Example - Counting VA license plates

VA license plates have three letters (with no I, O, or Q) followed by four numerals. A random
plate is seen on the road.

(a) What is the probability that the numerals occur in increasing order?

(b) What is the probability that at least one number is repeated?

Solution

(a) Numerals in increasing order.

(1) Count total plates:

Thus 233 ⋅ 104 possible plates.

(2) Count ways to have 4 numerals that occur in increasing order:

Have 23 ⋅ 23 ⋅ 23 options for letters.
Have 10 ⋅ 10 ⋅ 10 ⋅ 10 options for numbers.



There are (10
4
) ways to choose 4 distinct numerals from 10 options.

For each choice of four distinct numerals, there is exactly one ordering that’s increasing.

Therefore, there are (10
4 ) ways to have 4 numerals that occur in increasing order:

(3) Count ways to have 3 letters (excluding I, O, Q) that occur in order.

There are 26 total letters, 3 are excluded, thus 23 options for each letter.

Repetition is allowed, thus we have 23 ⋅ 23 ⋅ 23 = 233 total ways.

(3) Compute probability:

Total count of desired plates (taking the product of possibilities):

233 ⋅ (10

4
)

Let E label the event that a plate has increasing numerals. The counting formula for probability
is:

P [E] =
|E|

|S|

Evaluate using our data:

P [E] ≫≫
233 ⋅ (10

4 )

233 ⋅ 104
≫≫

10!
4!6!

10000
≫≫

(b) At least one number repeated.

“At least” is hard to work with! Lots of ways that can happen.

Try the complement event, which is much simpler: “no repetition”

Let E c be event that no numbers are repeated. All are distinct. Then E is our desired event.

Count the possibilities:

|E c| = 23 ⋅ 23 ⋅ 23 ⋅ 10 ⋅ 9 ⋅ 8 ⋅ 7

The total number of plates is still 233 ⋅ 104.

Therefore, license plates with at least one number repeated:

Desired outcomes over total outcomes:

|E|

|S|
≫≫

60348320

233 ⋅ 104
≫≫

21

1000

|E| = |S| − |E|

≫≫ 233 ⋅ 104 − 233 ⋅ 10 ⋅ 9 ⋅ 8 ⋅ 7 ≫≫ 60348320

0.496



Counting out 4 teams

A board game requires 4 teams of players. How many configurations of teams are there out of a
total of 17 players if the number of players per team is 4, 4, 4, 5, respectively.

Solution ​

This is just the multinomial coefficient with this data:

n r1 r2 r3 r4

17 4 4 4 5

So we have:

#teams =
n!

r1! r2! r3! r4!
≫≫

17!

4! 4! 4! 5!
≫≫ 214414200
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