

→ = "Division into Cases"

1/21

Law of Total Probability

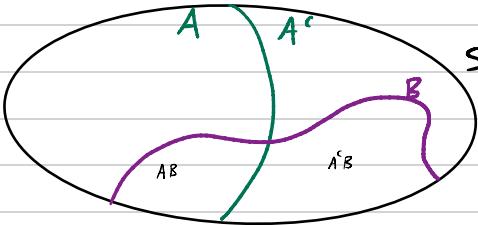
$$\begin{aligned} "AB" &= "A \cap B" \\ &= "A \cap B" \end{aligned}$$

$$P[B] = P[A]P[B|A] + P[A^c]P[B|A^c]$$

Recall

$$P[AB] = P[A]P[B|A]$$

$$P[A^cB] = P[A^c]P[B|A^c]$$



Example: Two bins, $B1 = 5$ red, 4 green marbles
 $B2 = 4$ red, 5 green marbles

Experiment: Take one from $B1$ put in $B2$. Shake $B2$.

Take one from $B2$.

Q: Find $P[\text{draw red}] = ?$

A:

T_R = transfer red

T_G = transfer green

D_R = draw red

D_G = draw green

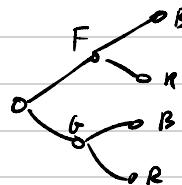
$$\text{Answer} = P[D_R] = P[T_R]P[D_R|T_R] + P[T_G]P[D_R|T_G]$$

$$= \frac{5}{9} \cdot \frac{5}{10} + \frac{4}{9} \cdot \frac{4}{10} = \boxed{\frac{41}{90}}$$

Bayes' Theorem

$$P[B|A] = P[A|B] \cdot \frac{P[B]}{P[A]} = P[B] \frac{P[A|B]}{P[A]}$$

- multistage experiments
- inferences to the middle



Example: Bins like above $B_1: S, 4g, B_2: 4r, 5g$
 Friend select bin at random, then draw from bin.
 Red is drawn. Q: Prob. that he picked bin 1.

A: R, G, B_1 , B_2

know: $P[B_1] = P[B_2] = \frac{1}{2}$

know: $P[R|B_1] = \frac{5}{9}$ want: $P[B_1|R]$
 $P[G|B_1] = \frac{4}{9}$
 $P[R|B_2] = \frac{4}{9}$
 $P[G|B_2] = \frac{5}{9}$

Bayes': $P[B_1|R] = P[R|B_1] \cdot \frac{P[B_1]}{P[R]}$
 $= \frac{5}{9} \cdot \frac{1/2}{?}$ need $P[R]$

$$P[R] = P[B_1]P[R|B_1] + P[B_2]P[R|B_2]$$

$$= \frac{1}{2} \cdot \frac{5}{9} + \frac{1}{2} \cdot \frac{4}{9} = \frac{1}{2}$$

So $P[B_1|R] = \frac{5}{9} \cdot \frac{1/2}{1/2} = \frac{5}{9} > \frac{1}{2} = \frac{4.5}{9}$

Example:

- 0.5% of pop. has Covid... We have a test.
- True positive on 96% of those who have.
- False pos. on 2% of those who don't.

Bob tests positive. What are odds Bob has Covid?

$$A: \frac{A_N}{T_N}, \frac{A_p}{T_p} \begin{matrix} \text{"actual"} \\ \text{"test"} \end{matrix} \quad \frac{A_N}{T_N} = A_N^c \\ \frac{A_p}{T_p} = T_p^c$$

know: $P[T_p | A_p] = .96, P[T_p | A_N] = .02$

$$P[A_p] = .005 \quad P[A_N] = .995$$

seen: $P[A_p | T_p]$

$$\text{Bayes': } \hookrightarrow = P[T_p | A_p] \cdot \frac{P[A_p]}{P[T_p]} \\ = .96 \cdot \frac{.005}{P[T_p]} \text{ need}$$

$$P[T_p] = P[A_p] P[T_p | A_p] + P[A_N] P[T_p | A_N] \\ = (.005)(.96) + (.995)(.02) \approx .025 = 2.5\%$$

$$\text{so } A \cap S = (.96) \cdot \frac{.005}{(.005)(.96) + (.995)(.02)} \approx 19\%$$

