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W05 Notes

Discrete families: summary

Bernoulli: X ~ Ber(p)

Indicates a win.
Px(1) =p, Px(0) = ¢
EX]=p

Var[X] = pq

Binomial: X ~ Bin(n, p)

Counts number of wins.
Px(k) = (Z)pkq"”“
E[X]=np

Var[X] = npg

These are n times the Bernoulli numbers.
Geometric: X ~ Geom(p)

Counts discrete wait time until first win.

Px(k) = ¢*'p
E[X] = 1
p
q
Var[X] = o)

Pascal: X ~ Pasc(¢,p)

2% win.

Counts discrete wait time until
k-1

P — k—L,.¢

x (k) ( 0 1) " p

EX] = £

p

Var[X] = Z_g
p

These are £ times the Geometric numbers.

Poisson: X ~ Pois())

Counts “arrivals” during time interval.

Px(k) = e‘”l\c—];
E[X] =\
Var[X] = A

Function on a random variable
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WO05 Notes

By composing any function g : R — R with a random variable X : S — R we obtain a new random
variable g o X. This one is called a derived random variable.

J

The derived random variable g o X may be written “g(X)”.

Discrete case:

Blg(X)] = Y g(k)- Px(k)

k

(Here the sum is over all possible values k of X, i.e. where Py (k) # 0.)

Continuous case:

Blo0)] = [ 9@) fate) o

o0

Notice: when applied to outcome s € S:

k is the output of X
g(k) is the output of go X

The proofs of these formulas are tricky because we must relate the PDF or PMF of X to that of g(X).

]_Zy (X)
=D v > Px(®)

Yy keg1(y)
I
Y keg(y)

= g(k)- Px(k)

k

For constants a and b:
ElaX +b] = aE[X]+b
For any X and Y on the same probability model:

E[X+Y] = E[X] + E[Y]
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=i Exercise - Linearity of expectation

Using the definition of expectation, verify both linearity formulas for the discrete case.

/\ Be careful!
Usually E[g(X)] # g(E[X]).
For example, usually E[X - X] # E[X] - E[X].

We distribute E over sums but not products (unless the factors are independent).

For constants a and b:

Var[aX +b] = a?Var[X]

Thus variance ignores the offset and squares the scale factor. It is not linear!

Var[aX +b] = E[(aX +b— E[aX + b))%

= E[(aX +b—apx — b)?

= E[(aX — apx)’]
= Bla*(X - ux)’]
= o’ B[(X - ux)’]
= a? Var[X]

The n'® moment of X is defined as the expectation of X™:

Discrete case:

BIx") = 3" k- p(k)

k

Continuous case:

BIX"] = [ T fa) de

(o]

A central moment of X is a moment of the variable X — E[X]:
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B[(X - E[X])"]

The data of all the moments collectively determines the probability distribution. This fact can be very
useful! In this way moments give an analogue of a series representation, and are sometimes more
useful than the PDF or CDF for encoding the distribution.

:= Example - Function given by chart

Suppose that g : R — R in such a way that g: 1+~ 4 and g: 2+— 1 and g : 3 — 87 and no other
values are mapped to 4, 1, 87.

X: 1 2 3
Px(k): | 17 | 2/7 | 47
Y: 4 1 87
Then:
17
EX|=1-2+2 - +3: 2 >>» —
And:
1 2 354
EY]=4-=+1-2 o =
Y] 7+ 7+87 z > -
Therefore:
17 354 814
EBX+2Y +3] >> 5~7+2-T+3 >>> —

:= Variance of uniform random variable

The uniform random variable X on [a, b] has distribution given by Plc < X < d| =

b—a
a<c<d<hb.

(a) Find Var[X] using the shorter formula.
(b) Find Var[3X] using “squaring the scale factor.”
(c) Find Var[3X] directly.

Solution

()
(1) Compute density.

The density for X is:

ol = {ﬁ for z € [a,b]

0 otherwise
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(2) Compute E[X] and E[X?] directly using integral formulas.

Compute E[X]:

bz b+a
E[X| =
X] L Zod o>

Now compute E[X?]:

EIX? = 0 & 1., 2
[(X?] = 5 dz  >> E(b +ba +a”)

(3) Find variance using short formula.

Plug in:
Var[X] = E[X?] - E[X]?
2
>> l(b2+ab+oﬂ)7(b+a)
3 2
(b—a)’
> 12
(b)

(1) “Squaring the scale factor” formula:

Var[aX +b] = a*Var[X]

(2) Plugging in:

Var[3X] >> 9Var[X] >> %(b—a)2

(©
(1) Density.
The variable 3X will have 1/3 the density spread over the interval [3a, 3b].

Density is then:

1
fsx(z) = {m on [3a, 3b|

0 otherwise

(2) Plug into prior variance formula.
Use a ~~ 3a and b ~ 3b.

Get variance:
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~ (3b—3a)?
Var[3X] = B
Simplify:
(3(b — a))? 9 >
>> — 0 >> ﬁ(b a)
=i Exercise - Probabilities via CDF
Suppose the CDF of X is given by Fx(z) = e Compute:
e xr
(a) PX < 1] (b) P[X < 1] () P[-0.5 < X <0.2] d) P[-2 < X]
Solution
04 Theory

Suppose we are given the PDF fx(z) of X, a continuous RV.

What is the PDF f,x), the derived variable given by composing X with g: R — R?

/N PDF of derived

The PDF of g(X) is not (usually) equal to go fx(z).

Relating PDF and CDF

When the CDF of X is differentiable, we have:
Fa@) = [ fx®dt —  faa) =5 Fx(o)

e d
Fuo@) = [ fuo®d = f(@) =5 Fo (o)

Therefore, if we know fx(z), we can find fx)(z) using a 3-step process:

(1) Find Fx(z), the CDF of X, by integration:
Compute Fx(z) = [* fx(t)dt.

Now remember that Fx(z) = P[X < z].

(2) Find Fy(x), the CDF of g(X), by comparing conditions:

When g is monotone increasing, we have equivalent conditions:
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9X) <z = X<gl(a)

>>  Plg(X) <] P[X <g '(z)]

>> Fyx)(z) = Fx(g'(2))

(3) Find fy(x) by differentiating Fyx):

d

d
Jox)(z) = %Fg(x)(x) >> EFX(QA(%))

Change variables:

The measure for integration is fx(z) dz.
SetY = X2 sody = 2xdx and dz = 2—\1@ dy.
Thus fx(z)dz = fX(\/@)z—}/y dy.

So the measure of integration in terms of y is fy(y) = fx(v/¥)3

&

05 IMlustration

‘= Example - PDF of derived from CDF

1

Suppose that FX([E) = ﬁ
€

(a) Find the PDF of X. () Find the PDF of eX.

Solution
(a)
Formula:
Fe@) = [ 1)t —  fxlo) = S Fx(@
Plug in:
@)= 1ren)? 3> e (o)
s> —
(1+e™)
(0)

By definition:

F.x(z) = Ple* < z]
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Since eX is increasing, we know:

Therefore:

Fex(w) = Fx(ln .'L')

1
> Trem PP Tio1

Then using differentiation:

d 1
fex(z) = — (m)

> —(14+zH72 (—z7) >> ——
1+ (-a7?) RS

Continuous wait times

A random variable X is exponential, written X ~ Exp(\), when X measures the wait time until
first arrival in a Poisson process with rate .

Exponential PDF:
de™ t>0
= =
fx(¢) {0 £ <0

Poisson is continuous analog of binomial

Exponential is continuous analog of geometric

Notice the coefficient A in fx. This ensures P[—co < X < o0] = 1:

o0
/ e Mdt >> —AlHe ™ -1) »>> Al
0

Notice the “tail probability” is a simple exponential decay:
PX>t] = e™

(Compute an improper integral to verify this.)
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A random variable X is Erlang, written X ~ Erlang(¢, A), when X measures the wait time until

/' arrival in a Poisson process with rate \.

Erlang PDF:

Erlang is continuous analog of Pascal

‘= Example - Earthquake wait time
Suppose the San Andreas fault produces major earthquakes modeled by a Poisson process, with
an average of 1 major earthquake every 100 years.
(a) What is the probability that there will not be a major earthquake in the next 20 years?
(b) What is the probability that t/ree earthquakes will strike within the next 20 years?
Solution
(a)

Since the average wait time is 100 years, we set A = 0.01 earthquakes per year. Set
X ~ Exp(0.01) and compute:

PX>20=e" > 0020 s x0.82

(b)
The same Poisson process has the same A = 0.01 earthquakes per year. Set X ~ Erlang(3,0.01),
s0:
2\
t) = t[71 — A\t
fx() = e
(0.01)% 57 001 107° 5 oo
7 : —t :
>> B e >> 2 e
and compute:
20
P[X <20] = fx(z)dz

0

20 10—6
>> / Tt%’o'm'tdt > ~0.00115
0

The memoryless distribution is exponential
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The exponential distribution is memoryless.
This means that knowledge that an event has not yet occurred does not affect the probability of

its occurring in future time intervals:
PX>t+s|X >t = PX > s
This is easily checked using the PDF:

e—A(t+s)/e—At _ e—As

No other continuous distribution is memoryless.

This means any other (continuous) memoryless distribution agrees in probability with the
exponential distribution. The reason is that the memoryless property can be rewritten as
P[X >t+ s] = P[X > t|P[X > s]. Consider P[X > z] as a function of z, and notice that this
function converts sums into products. Only the exponential function can do this.

The geometric distribution is the discrete memoryless distribution.

o0
PX>n] >» > ¢'p >> pl+q+d+..)
k=n-+1

and by substituting n + k, we also know P[X > n + k] = g"t*.

Then:

PX=n+k k-l
PX=n+k|X>n] >> PX=ntH >> L2
P[X > n] q"

>> ¢"lp >> PX =Kk

For constants a and A:
Exp(a)) ~ L1Exp())

Derivation:
Let X ~ Exp()) and observe that P[X > t] = e~* (the “tail probability”).

Now observe that:
Pla !X >t] = P[IX >at] >> e
Let Y ~ Exp(a)). So we see that:
Pla'X >t] = P[Y >t

Since the tail event is complementary to the cumulative event, these two distributions have the
same CDF, and therefore they are equal.

Divide the waiting time into small intervals. Let p = % be the probability of at least one success

in the time interval [a,a + %] for any a. Assume these events are independent.
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A random variable T, measuring the end time of the first interval [£2, £] containing a success

would have a geometric distribution with % in place of k:

k-1
et (3
n n n

By taking the sum of a geometric series, one finds:

e (1_1>LMJ

n

Thus P[T, > z] — e ** asn — co.
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