W09 - Examples

Sums of random variables

Sum of parabolic random variables

Suppose *X* is an RV with PDF given by:

$$f_X(x) = egin{cases} rac{3}{4}(1-x^2) & x \in [-1,1] \ 0 & ext{otherwise} \end{cases}$$

Let *Y* be an independent copy of *X*. So $f_Y = f_X$, but *Y* is independent of *X*.

Find the PDF of X + Y.

Solution

The graph of $f_X(w-x)$ matches the graph of $f_X(x)$ except (i) flipped in a vertical mirror, (ii) shifted by w to the left.

When $w \in [-2, 0]$, the integrand is nonzero only for $x \in [-1, w + 1]$:

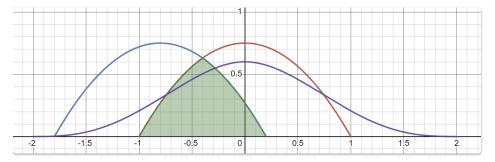
$$egin{array}{lcl} f_{X+Y}(w) & = & \left(rac{3}{4}
ight)^2 \int_{-1}^{w+1} \left(1-(w-x)^2
ight)\!\left(1-x^2
ight) dx \ & = & rac{9}{16}\!\left(rac{w^5}{30}-rac{2w^3}{3}-rac{4w^2}{3}+rac{16}{15}
ight) \end{array}$$

When $w \in [0, +2]$, the integrand is nonzero only for $x \in [w-1, +1]$:

$$egin{array}{lcl} f_{X+Y}(w) & = & \left(rac{3}{4}
ight)^2 \int_{w-1}^{+1} \left(1-(w-x)^2
ight) \left(1-x^2
ight) dx \ & = & rac{9}{16} \left(-rac{w^5}{30} + rac{2w^3}{3} - rac{4w^2}{3} + rac{16}{15}
ight) \end{array}$$

Final result is:

$$f_{X+Y}(w) \quad = \quad egin{cases} rac{9}{16} \left(rac{w^5}{30} - rac{2w^3}{3} - rac{4w^2}{3} + rac{16}{15}
ight) & w \in [-2,0] \ & \ rac{9}{16} \left(-rac{w^5}{30} + rac{2w^3}{3} - rac{4w^2}{3} + rac{16}{15}
ight) & w \in [0,2] \ & \ 0 & ext{otherwise} \end{cases}$$



Exp plus Exp equals Erlang

Let us verify this formula by direct calculation:

$$\operatorname{Exp}(\lambda) + \operatorname{Exp}(\lambda) \sim \operatorname{Erlang}(2, \lambda)$$
"

Solution

Let $X, Y \sim \text{Exp}(\lambda)$ be independent RVs.

Therefore:

$$f_X = f_Y = egin{cases} \lambda e^{-\lambda x} & x \geq 0 \ 0 & ext{otherwise} \end{cases}$$

Now compute the convolution:

$$egin{array}{lll} f_{X+Y}(w) & = & \int_{-\infty}^{+\infty} f_X(w-x) f_Y(x) \, dx \ & \gg & \int_0^w \lambda^2 e^{-\lambda(w-x)} e^{-\lambda x} \, dx \ & \gg & \lambda^2 \int_0^w e^{-\lambda w} \, dx & \gg & \lambda^2 w e^{-\lambda w} \end{array}$$

This is the Erlang PDF:

$$f_X(t) = rac{\lambda^\ell}{(\ell-1)!} t^{\ell-1} e^{-\lambda t}igg|_{\ell=2}$$

Expectation for two random variables

Expectation of X squared plus Y from joint PMF chart

Suppose the joint PMF of *X* and *Y* is given by this chart:

$Y\downarrow \ X ightarrow$	1	2
-1	0.2	0.2
0	0.35	0.1
1	0.05	0.1

Define $W = X^2 + Y$. Find the expectation E[W].

Solution

First compute the values of W for each pair (X, Y) in the chart:

$Y\downarrow X ightarrow$	1	2
-1	0	3
0	1	4
1	2	5

Now take the sum, weighted by probabilities:

$$\begin{array}{ll} 0\cdot (0.2) + 3\cdot (0.2) + 1\cdot (0.35) \\ + 4\cdot (0.1) + 2\cdot (0.05) + 5\cdot (0.1) \end{array} \gg \gg \quad 1.95 \ = \ E[W]$$

Expectation of Y two ways and Expectation of XY from joint density

Suppose *X* and *Y* are random variables with the following joint density:

$$f_{X,Y}(x,y) = egin{cases} rac{3}{16}xy^2 & x,y \in [0,2] \ 0 & ext{otherwise} \end{cases}$$

- (a) Compute E[Y] using two methods.
- (b) Compute E[XY].

Solution

- (a)
- (1) Method One: via marginal PDF $f_Y(y)$:

$$f_Y(y) = \int_0^2 rac{3}{16} x y^2 \, dx \gg \gg \left\{ egin{array}{ll} rac{3}{8} y^2 & y \in [0,2] \ 0 & ext{otherwise} \end{array}
ight.$$

Then expectation:

$$E[Y] = \int_0^2 y \, f_Y(y) \, dy \gg \int_0^2 \frac{3}{8} y^3 \, dy \gg 3/2$$

(2) Method Two: directly, via two-variable formula:

$$E[Y] = \int_0^2 \int_0^2 y \cdot \frac{3}{16} x y^2 dy dx \gg \int_0^2 \frac{3}{4} x dx \gg 3/2$$

(b) Directly, via two-variable formula:

$$egin{array}{lll} E[XY] & = & \int_0^2 \int_0^2 xy \cdot rac{3}{16} xy^2 \, dy \, dx \ & \gg & \int_0^2 rac{3}{4} x^2 \, dx & \gg \gg & 2 \end{array}$$

Covariance from PMF chart

Suppose the joint PMF of X and Y is given by this chart:

$Y\downarrow X ightarrow$	1	2
-1	0.2	0.2
0	0.35	0.1
1	0.05	0.1

Find Cov[X, Y].

Solution

We need E[X] and E[Y] and E[XY].

Therefore:

$$Cov[X, Y] = E[XY] - E[X]E[Y]$$

 $\gg \sim -0.35 - (1.4)(-0.25) \gg \sim 0$

Variance of sum of indicators

An urn contains 3 red balls and 2 yellow balls.

Suppose 2 balls are drawn without replacement, and X counts the number of red balls drawn.

Find Var[X].

Solution

Let X_1 indicate (one or zero) whether the first ball is red, and X_2 indicate whether the second ball is red, so $X = X_1 + X_2$.

Then X_1X_2 indicates whether both drawn balls are red; so it is Bernoulli with success probability $\frac{3}{5}\frac{2}{4}=\frac{3}{10}$. Therefore $E[X_1X_2]=\frac{3}{10}$.

We also have $E[X_1] = E[X_2] = \frac{3}{5}$.

The variance sum rule gives:

$$\begin{aligned} \operatorname{Var}[X] &= \operatorname{Var}[X_1] + \operatorname{Var}[X_2] + 2 \operatorname{Cov}[X_1, X_2] \\ \gg \gg & E[X_1^2] - E[X_1]^2 + E[X_2^2] - E[X_2]^2 + 2(E[X_1 X_2] - E[X_1] E[X_2]) \\ \gg \gg & \frac{3}{5} - \left(\frac{3}{5}\right)^2 + \frac{3}{5} - \left(\frac{3}{5}\right)^2 + 2\left(\frac{3}{10} - \frac{3}{5} \cdot \frac{3}{5}\right) & \gg \gg \frac{9}{25} \end{aligned}$$