
W09 - Examples
Sums of random variables
Sum of parabolic random variables

Suppose X is an RV with PDF given by:

fX(x) = {

Let Y  be an independent copy of X. So fY = fX, but Y  is independent of X.

Find the PDF of X + Y .

Solution

The graph of fX(w − x) matches the graph of fX(x) except (i) flipped in a vertical mirror, (ii) shifted by w to the left.

When w ∈ [−2, 0], the integrand is nonzero only for x ∈ [−1,w + 1]:

When w ∈ [0, +2], the integrand is nonzero only for x ∈ [w − 1, +1]:

Final result is:
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0 otherwise
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Exp plus Exp equals Erlang

Expectation for two random variables
Expectation of X squared plus Y from joint PMF chart

Let us verify this formula by direct calculation:

“Exp(λ) + Exp(λ) ∼ Erlang(2,λ)”

Solution

Let X, Y ∼ Exp(λ) be independent RVs.

Therefore:

fX = fY = {

Now compute the convolution:

This is the Erlang PDF:

fX(t) =
λℓ

(ℓ − 1)!
tℓ−1e−λt

ℓ=2

λe−λx x ≥ 0
0 otherwise

fX+Y (w) = ∫
+∞
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fX(w − x)fY (x) dx

≫≫ ∫
w

0

λ2e−λ(w−x)e−λx dx

≫≫ λ2 ∫
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0
e−λw dx ≫≫ λ2we−λw∣Suppose the joint PMF of X and Y  is given by this chart:

Y ↓ X → 1 2

−1 0.2 0.2

0 0.35 0.1

1 0.05 0.1

Define W = X 2 + Y . Find the expectation E[W ].

Solution

First compute the values of W  for each pair (X,Y ) in the chart:

Y ↓ X → 1 2

−1 0 3

0 1 4

1 2 5
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Expectation of Y two ways and Expectation of XY from joint
density

Covariance from PMF chart

Now take the sum, weighted by probabilities:

≫≫ 1.95 = E[W ]
0 ⋅ (0.2) + 3 ⋅ (0.2) + 1 ⋅ (0.35)

+4 ⋅ (0.1) + 2 ⋅ (0.05) + 5 ⋅ (0.1)

Suppose X and Y  are random variables with the following joint density:

fX,Y (x, y) = {

(a) Compute E[Y ] using two methods.

(b) Compute E[XY ].

Solution

(a)

(1) Method One: via marginal PDF fY (y):

fY (y) = ∫
2

0
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16
xy2 dx ≫≫ {

Then expectation:

E[Y ] = ∫
2
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y fY (y) dy ≫≫ ∫
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y3 dy ≫≫ 3/2

(2) Method Two: directly, via two-variable formula:
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(b) Directly, via two-variable formula:

3
16
xy2 x, y ∈ [0, 2]

0  otherwise 

3
8 y

2 y ∈ [0, 2
0 otherwise

E[XY ] = ∫
2

0

∫
2
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3

16
xy2 dy dx

≫≫ ∫
2

0
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4
x2 dx ≫≫ 2

Suppose the joint PMF of X and Y  is given by this chart:

Y ↓ X → 1 2

−1 0.2 0.2

0 0.35 0.1

1 0.05 0.1

Find Cov[X,Y ].
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Variance of sum of indicators

Solution

We need E[X] and E[Y ] and E[XY ].

E[X] = 1 ⋅ (0.2 + 0.35 + 0.05) + 2 ⋅ (0.2 + 0.1 + 0.1) ≫≫ 1.4

E[XY ] = −1 ⋅ (0.2) − 2 ⋅ (0.2) + 0 + 1 ⋅ (0.05) + 2 ⋅ (0.1) ≫≫ −0.35

Therefore:

E[Y ] = −1 ⋅ (0.2 + 0.2) + 0 ⋅ (0.35 + 0.1) + 1 ⋅ (0.05 + 0.1)

≫≫ −0.25

Cov[X,Y ] = E[XY ] − E[X]E[Y ]

≫≫ −0.35 − (1.4)(−0.25) ≫≫ 0

An urn contains 3 red balls and 2 yellow balls.

Suppose 2 balls are drawn without replacement, and X counts the number of red balls drawn.

Find Var[X].

Solution

Let X1 indicate (one or zero) whether the first ball is red, and X2 indicate whether the second ball is red, so
X = X1 + X2.

Then X1X2 indicates whether both drawn balls are red; so it is Bernoulli with success probability 3
5

2
4 = 3

10 .
Therefore E[X1X2] = 3

10
.

We also have E[X1] = E[X2] = 3
5 .

The variance sum rule gives:

Var[X] = Var[X1] + Var[X2] + 2Cov[X1,X2]

≫≫ E[X 2
1 ] − E[X1]2 + E[X 2
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