W10 - Examples

Conditional distribution

Conditional PMF, variable event, via joint density

Suppose *X* and *Y* have joint PMF given by:

$$P_{X,Y}(k,\ell) \quad = \quad egin{cases} rac{k+\ell}{21} & k=1,2,3; \ \ell=1,2 \ 0 & ext{otherwise} \end{cases}$$

Find $P_{X|Y}(k|\ell)$ and $P_{Y|X}(\ell,k)$.

Solution

Marginal PMFs:

$$P_X(k) \;\; = \;\; rac{2k+3}{21}, \qquad k=1,2,3$$
 $P_Y(\ell) \;\; = \;\; rac{\ell+2}{7}, \qquad \ell=1,2$

Assuming $\ell = 1$ or 2, for each k = 1, 2, 3 we have:

$$P_{X|Y}(k,\ell) \quad = \quad rac{P_{X,Y}(k,\ell)}{P_Y(\ell)} \quad \gg \gg \quad rac{k+\ell}{3\ell+6}$$

Assuming k = 1, 2, or 3, for each $\ell = 1$, 2 we have:

$$P_{Y|X}(\ell,k) = rac{P_{Y,X}(\ell,k)}{P_{X}(k)} \gg rac{k+\ell}{2k+3}$$

Conditional expectation

Conditional PMF, fixed event, expectation

Suppose *X* measures the lengths of some items and has the following PMF:

$$P_X(k) = egin{cases} 0.15 & k=1,2,3,4 \ 0.1 & k=5,6,7,8 \ 0 & ext{otherwise} \end{cases}$$

Let L be the event that $X \geq 5$.

- (a) Find the conditional PMF of X given that L is known.
- (b) Find the conditional expected value and variance of *X* given *L*.

Solution

(a)

Conditional PMF formula with $x \in L$ plugged in:

$$P_{X|L}(x) = egin{cases} rac{P_X(x)}{P[L]} & x=5,6,7,8 \ 0 & ext{otherwise} \end{cases}$$

Compute P[L] by adding cases:

$$P[L] \ = \ \sum_{k=5}^8 P_X(k) \quad \gg \gg \quad 0.4$$

Divide nonzero PMF entries by 0.1:

$$P_{X|L}(k) = egin{cases} 0.25 & k=5,6,7,8 \ 0 & ext{otherwise} \end{cases}$$

(b)

Find $E[X \mid L]$:

$$E[\,X\mid L\,] \ = \ \sum_{k=5}^8 k\, P_{X\mid L}(k)$$
 $\gg\gg \ \ \ 5\cdot(0.25)+6\cdot(0.25)+7\cdot(0.25)+8\cdot(0.25)$ $\gg\gg \ \ \ \ 6.5\, {
m min}$

Find $E[X^2 \mid L]$:

$$egin{aligned} E[\,X^2\mid L\,] \; &= \; \sum_{k=5}^8 k^2 \, P_{X\mid L}(k) \ \gg \gg \quad 5^2 \cdot (0.25) + 6^2 \cdot (0.25) + 7^2 \cdot (0.25) + 8^2 \cdot (0.25) \ \gg \gg \quad 43.5 \, \mathrm{min}^2 \end{aligned}$$

Find $Var[X \mid L]$ using "short form" with conditioning:

$$Var[X | L] = E[X^2 | L] - E[X | L]^2 \gg 1.25 min^2$$

Conditional expectations from joint density

Suppose *X* and *Y* are random variables with joint density given by:

$$f_{X,Y}(x,y) = egin{cases} rac{1}{y}e^{-x/y}e^{-y} & x,y \in (0,\infty) \ 0 & ext{otherwise} \end{cases}$$

Find $E[X \mid Y = y]$. Use this to compute E[X].

Solution

(1) Derive the marginal density $f_Y(y)$:

$$f_Y(y)$$
 >>> $\int_0^{+\infty} rac{1}{y} e^{-x/y} e^{-y} \, dx$

$$\gg \gg -e^{-x/y}e^{-y}\Big|_{x=0}^{\infty} \gg \gg e^{-y}$$

(2) Use $f_Y(y)$ to compute $f_{X|Y}(x|y)$:

$$egin{aligned} f_{X|Y}(x|y) &\gg\gg &rac{f_{X,Y}(x,y)}{f_Y(y)} \ &\gg\gg &rac{1}{y}e^{-x/y}e^{-y}\cdot(e^{-y})^{-1} &\gg\gg &rac{1}{y}e^{-x/y} \end{aligned}$$

(3) Use $f_{X|Y}(x|y)$ to calculate expectation conditioned on the variable event:

$$egin{align} E[X\mid Y=y] &\gg\gg \int_{-\infty}^{+\infty}x\,f_{X\mid Y}(x\mid y)\,dx \ &\gg\gg \int_{0}^{\infty}rac{x}{y}e^{-x/y}\,dx &\gg\gg y \ \end{gathered}$$

(4) Apply Iterated Expectation:

Set g(y) = y. By Iterated Expectation, we know that E[X] = E[g(Y)]. Therefore:

$$egin{array}{lll} E[X] = E[g(Y)] & = & \int_{-\infty}^{+\infty} g(y) \, f_Y(y) \, dy \ & \gg & \int_{0}^{+\infty} y \, e^{-y} \, dy & \gg \gg & 1 \end{array}$$

Notice that g(Y) = Y, so $E[X \mid Y] = Y$, and Iterated Expectation says that E[X] = E[Y].

Sum of random number of RVs

Let N denote the number of customers that enter a store on a given day.

Let X_i denote the amount spent by the i^{th} customer.

Assume that E[N] = 50 and $E[X_i] = \$8$ for each i.

What is the expected total spend of all customers in a day?

Solution

A formula for the total spend is $X = \sum_{i=1}^{N} X_i$.

By Iterated Expectation, we know $E[X] = E[E[X \mid N]]$.

Now compute $E[X \mid N]$ as a function of N:

$$egin{aligned} E[X \mid N = n] & \gg \gg & E\left[\left(\sum_{i=1}^{N}X_i
ight) \mid N = n
ight] \ & \gg \gg & E\left[\left(\sum_{i=1}^{n}X_i
ight) \mid N = n
ight] \ & \gg \gg & \sum_{i=1}^{n}E[X_i \mid N = n] \ & \gg \gg & \sum_{i=1}^{n}E[X_i] & \gg \gg & 8n \end{aligned}$$

Therefore g(n) = 8n and g(N) = 8N and $E[X \mid N] = 8N$.

Then by Iterated Expectation, E[X] = E[8N] = 8E[N] = \$400.